35.8k views
3 votes
What is the range of the function f(x) = |x + 4| + 2?

R: f(x) ∈ ℝ
R: f(x) ≥ 2
R: f(x) ∈ ℝ
R: f(x) ∈ ℝ

User Hoford
by
5.6k points

1 Answer

7 votes


\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}

Given:


\longrightarrow \sfx + 4

You need to remember that the form of an Absolute Value Function is:

For the vertex:


\small\longrightarrow \sf{H= \: \: x -coordinate}


\small\longrightarrow \sf{K= y-coordinate}

For the definition:

If "a" is positive (+) , then the range of the function is:


\small\longrightarrow \sf{R:y \: \underline > \: k}

If "a" is negative (-), the range of the function is:


\small\longrightarrow \sf{R: y \: \underline < \: k}

In this case we can identify that:


\small\longrightarrow \sf{a = 1}


\small\longrightarrow\sf{a = 2}


\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}


\large \bm{R:  f(x) \underline > 2}

User Hroft
by
5.7k points