136k views
0 votes
If

m ≤ f(x) ≤ M
for
a ≤ x ≤ b,
where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then
m(b − a) ≤
b
a
f(x) dx ≤ M(b − a).
Use this property to estimate the value of the integral.
⁄12 7 tan(4x) dx

If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute-example-1

1 Answer

2 votes

It's easy to show that
7\tan(4x) is strictly increasing on
x\in\left[0,\frac\pi8\right]. This means


M = \max \left\{7\tan(4x) \mid \frac\pi{16} \le x \le \frac\pi{12}\right\} = 7\tan(4x) \bigg|_(x=\pi/12) = 7\sqrt3

and


m = \min \left\{7\tan(4x) \mid \frac\pi{16} \le x \le \frac\pi{12}\right\} = 7\tan(4x) \bigg|_(x=\pi/16) = 7

Then the integral is bounded by


\displaystyle 7\left(\frac\pi{12} - \frac\pi{16}\right) \le \int_(\pi/16)^(\pi/12) 7\tan(4x) \, dx \le 7\sqrt3 \left(\frac\pi{12} - \frac\pi{16}\right)


\implies \displaystyle \boxed{(7\pi)/(48)} \le \int_(\pi/16)^(\pi/12) 7\tan(4x) \, dx \le \boxed{(7\sqrt3\,\pi)/(48)}

User Live
by
4.6k points