Answer:
w = -11
Explanation:
![√(3 - 2w) = w + 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/9o7g7ninppw79x2kzmg7fezu0wcr0xb23l.png)
![(√(3 - 2w))^2 = (w + 6)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/n6yuoby8hywv3jf7p4jgcyyhbxv0zuvogy.png)
![3 - 2w = w^2 + 12w + 36](https://img.qammunity.org/2023/formulas/mathematics/high-school/c9mwg8u0nl7h3wz5nidnf5n1fwvyms7o4i.png)
![w^2 + 14w + 33 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/69o28z4hoxs4zia4rhsddx5q3dl33gzfh4.png)
![(w + 11)(w + 3) = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/wxuoijstp01nypoxxklepaehc21juu578v.png)
or
![w + 3 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/nu6z3pm1mqgl3d221gquiprtluput87vew.png)
or
![w = -3](https://img.qammunity.org/2023/formulas/mathematics/high-school/lg3qajiobz1fg4yjmcau2u942rhymbcxz2.png)
When you square both sides of an equation, you must check all solutions for extraneous solutions.
Check w = -11.
![√(3 - 2w) = w + 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/9o7g7ninppw79x2kzmg7fezu0wcr0xb23l.png)
![√(3 - 2(-11)) = -11 + 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/rcykd2w8e1fcgrr82bd5pi5croqloepb1b.png)
![√(3 + 22) = -5](https://img.qammunity.org/2023/formulas/mathematics/high-school/ppjg66tdbkh5jiz78id3cpk5cp002l6l3t.png)
![√(25) = -5](https://img.qammunity.org/2023/formulas/mathematics/high-school/9i0ahbq922hpr21auo9shfl0a82nvdm20y.png)
![5 = -5](https://img.qammunity.org/2023/formulas/mathematics/high-school/onrlmw1w0xchvt3tl8wdloj4f1t1gc7hyv.png)
This is a false statement, so the solution w = -11 is extraneous since it does not satisfy the original equation.
Check w = -3.
![√(3 - 2w) = w + 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/9o7g7ninppw79x2kzmg7fezu0wcr0xb23l.png)
![√(3 - 2(-3)) = -3 + 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/vg0y1umk31bo0za1rfbsdcbkv7mg2dsyll.png)
![√(3 + 6) = 3](https://img.qammunity.org/2023/formulas/mathematics/high-school/ophsapj4yhr2m4n1rzlbcjjk4bojj4cbvj.png)
![√(9) = 3](https://img.qammunity.org/2023/formulas/mathematics/college/9hch6ho0kgyudyda0j84ign7d5cdo3zm63.png)
![3 = 3](https://img.qammunity.org/2023/formulas/mathematics/college/lbb6g82r6ckbegt6ihd1llfg1bbuk36zhh.png)
This is a true statement, so the solution w = -3 is valid.
Answer: w = -11