161k views
3 votes
Use the method of undetermined coefficients to solve the given nonhomogeneous system. x' = −1 5 −1 1 x + sin(t) −2 cos(t)

1 Answer

2 votes

It looks like the system is


x' = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}

Compute the eigenvalues of the coefficient matrix.


\begin{vmatrix} -1 - \lambda & 5 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0 \implies \lambda = \pm2i

For
\lambda = 2i, the corresponding eigenvector is
\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top such that


\begin{bmatrix} -1 - 2i & 5 \\ -1 & 1 - 2i \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Notice that the first row is 1 + 2i times the second row, so


(1+2i) \eta_1 - 5\eta_2 = 0

Let
\eta_1 = 1-2i; then
\eta_2=1, so that


\begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} = 2i \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}

The eigenvector corresponding to
\lambda=-2i is the complex conjugate of
\eta.

So, the characteristic solution to the homogeneous system is


x = C_1 e^(2it) \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^(-2it) \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix}

The characteristic solution contains
\cos(2t) and
\sin(2t), both of which are linearly independent to
\cos(t) and
\sin(t). So for the nonhomogeneous part, we consider the ansatz particular solution


x = \cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}

Differentiating this and substituting into the ODE system gives


-\sin(t) \begin{bmatrix} a \\ b \end{bmatrix} + \cos(t) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \left(\cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}\right) + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}


\implies \begin{cases}a - 5c + d = 1 \\ b - c + d = 0 \\ 5a - b + c = 0 \\ a - b + d = -2 \end{cases} \implies a=(11)/(41), b=(38)/(41), c=-(17)/(41), d=-(55)/(41)

Then the general solution to the system is


x = C_1 e^(2it) \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^(-2it) \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix} + \frac1{41} \cos(t) \begin{bmatrix} 11 \\ 38 \end{bmatrix} - \frac1{41} \sin(t) \begin{bmatrix} 17 \\ 55 \end{bmatrix}

User Vedran Jukic
by
4.0k points