Answer:
? = 3
Explanation:
To find the value of ?, substitute one of the ordered pairs from the table [except (0, 0)] into the given formula and solve for ?.
Given formula:
![\sf y=\boxed{?} \:x](https://img.qammunity.org/2023/formulas/mathematics/high-school/217b22zo016xaa9oi8ukwnl61q8ecs4sxc.png)
Substitute x = 1 and y = 3 into the formula:
![\sf 3=\boxed{?} \:1](https://img.qammunity.org/2023/formulas/mathematics/high-school/eu116akszeq3tlsjcgib6jcttq42htgtfs.png)
To isolate ? divide both sides by 1:
![\implies \sf (3)/(1)=\frac{\boxed{?} \:1}{1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qa388j224ud60m6rznuoenbwehdhcp2qix.png)
![\implies \sf 3=\boxed{?}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7lgc86mng1mq9zf48365iz6a4krvtor0mt.png)
Therefore, ? = 3:
![\implies \sf y=3x](https://img.qammunity.org/2023/formulas/mathematics/high-school/ies5adrk3qd79degn9o2yi9ifrb5ax4hpz.png)
Check by inputting another value of x from the table into the found formula and comparing the calculated y-value:
![\sf x=-2 \implies y=3(-2)=-6 \quad \boxed{\sf correct}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f6vo5va5br1m0qw1e29ydhkcwz4zzdbe0j.png)
![\sf x=3 \implies y=3(3)=9 \quad \boxed{\sf correct}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v5kokyonp894ylp15cdey9xnhqcfn4pgo1.png)