45.2k views
3 votes
Use the method of undetermined coefficients to find the general solution to the de y′′−3y′ 2y=ex e2x e−x

1 Answer

0 votes

I'll assume the ODE is


y'' - 3y' + 2y = e^x + e^(2x) + e^(-x)

Solve the homogeneous ODE,


y'' - 3y' + 2y = 0

The characteristic equation


r^2 - 3r + 2 = (r - 1) (r - 2) = 0

has roots at
r=1 and
r=2. Then the characteristic solution is


y = C_1 e^x + C_2 e^(2x)

For nonhomogeneous ODE (1),


y'' - 3y' + 2y = e^x

consider the ansatz particular solution


y = axe^x \implies y' = a(x+1) e^x \implies y'' = a(x+2) e^x

Substituting this into (1) gives


a(x+2) e^x - 3 a (x+1) e^x + 2ax e^x = e^x \implies a = -1

For the nonhomogeneous ODE (2),


y'' - 3y' + 2y = e^(2x)

take the ansatz


y = bxe^(2x) \implies y' = b(2x+1) e^(2x) \implies y'' = b(4x+4) e^(2x)

Substitute (2) into the ODE to get


b(4x+4) e^(2x) - 3b(2x+1)e^(2x) + 2bxe^(2x) = e^(2x) \implies b=1

Lastly, for the nonhomogeneous ODE (3)


y'' - 3y' + 2y = e^(-x)

take the ansatz


y = ce^(-x) \implies y' = -ce^(-x) \implies y'' = ce^(-x)

and solve for
c.


ce^(-x) + 3ce^(-x) + 2ce^(-x) = e^(-x) \implies c = \frac16

Then the general solution to the ODE is


\boxed{y = C_1 e^x + C_2 e^(2x) - xe^x + xe^(2x) + \frac16 e^(-x)}