229k views
5 votes
Find the limit. use l'hospital's rule if appropriate. if there is a more elementary method, consider using it. lim x→0 e3x − 1 − 3x x2

User Desert Ice
by
3.2k points

1 Answer

2 votes

It looks like the limit is


\displaystyle \lim_(x\to0) (e^(3x) - 1 - 3x)/(x^2)

L'Hôpital's rule works in this case; applying it twice gives


\displaystyle \lim_(x\to0) (e^(3x) - 1 - 3x)/(x^2) = \lim_(x\to0) (3e^(3x) - 3)/(2x) = \lim_(x\to0) (9e^(3x))/(2) = \boxed{\frac92}

User Fernando Urkijo
by
3.4k points