162k views
0 votes
(b) Expand and simplify (x - 3) (2x + 3)(4x + 5)

2 Answers

2 votes

Answer:

8x³ - 2x² - 51x - 45

Explanation:

(x - 3)(2x + 3)(4x + 5) ← expand the 2nd/3rd factors using FOIL

= (x - 3)(8x² + 10x + 12x + 15)

= (x - 3)(8x² + 22x + 15)

multiply each term in the second factor by each term in the first factor.

x(8x² + 22x + 15) - 3(8x² + 22x + 15) ← distribute parenthesis

= 8x³ + 22x² + 15x - 24x² - 66x - 45 ← collect like terms

= 8x³ - 2x²- 51x - 45

User Harkirat Saluja
by
8.3k points
0 votes

Expand first 2 bracket first to get:

2x^2 + 3x - 6x - 9 & simplify, then expand with last bracket.

2x^2 - 3x - 9 (4x + 5)

2x^2 x 4x = 8x^4

2x^2 x 5 = 10x^2

Repeat for the next two numbers next to the bracket.

You get => 8x^3 + 10x^2 - 12x^2 - 15x - 36x - 45

Final simplified answer of:

8x^3 - 2x^2 - 51x - 45

Hope this helps!

User Jen Person
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories