Answer:
2.57
Explanation:
The mean absolute deviation(MAD) of a data set is given by the formula
![$ MAD =(1)/(n) \sum_(i=1)^n |x_i-\bar{x}|$](https://img.qammunity.org/2023/formulas/mathematics/high-school/cnug36luqk8ftrbqozjmjril1m6uu6az6t.png)
n = number of data set values. Here n=7
mean of the data set values =
![(20+16+21+16+22+16+ 15)/7 = 126/7 = 18](https://img.qammunity.org/2023/formulas/mathematics/high-school/tfs91yjfxnw8ihi5bvxt0l8utet06rvoet.png)
are the n individual values
Substituting in the summation we get
MAD =
![(1)/(7) |20-18| + |16-18| + |21-18| + |16-18| + |22-18| + |16-18| + |15-18|\\= (2 + 2 + 3 + 2 + 4+ 2 + 3)/7\\= 18/7 = 2.571428 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/dnyujofwyqai5m3yuwcziks6d409h1y6ov.png)
Rounded to the nearest hundredth, the answer is 2.57