Answer:
Point A: (2, 10)
Point B: (-3, 0)
Point C: (-5, -4)
Point D: (-5, -32)
Step-by-step explanation:
Part (a)
Points A and B are the points of intersection between the two graphs.
Therefore, to find the x-values of the points of intersection, substitute one equation into the other and solve for x:
![\implies 2x+6=-2x^2+18](https://img.qammunity.org/2023/formulas/mathematics/college/8rw14wxpudxfvjjna4y95nui1abhgthupu.png)
![\implies 2x^2+2x-12=0](https://img.qammunity.org/2023/formulas/mathematics/college/11l1hosrccwps8map18dgm46n2d50i5av5.png)
![\implies 2(x^2+x-6)=0](https://img.qammunity.org/2023/formulas/mathematics/college/9u408s5ihjl466gti1s5ru0qeru2i0m95h.png)
![\implies x^2+x-6=0](https://img.qammunity.org/2023/formulas/mathematics/college/momuk1kitepoedotkcxc35u7lcyzw01w4u.png)
![\implies x^2+3x-2x-6=0](https://img.qammunity.org/2023/formulas/mathematics/college/ztrfagxe4v298wka75y904mlito1isoewa.png)
![\implies x(x+3)-2(x+3)=0](https://img.qammunity.org/2023/formulas/mathematics/college/rs7j2m6ucza6tpj9mkjlk4c6daysmodcii.png)
![\implies (x-2)(x+3)=0](https://img.qammunity.org/2023/formulas/mathematics/college/v7yqrtm5vde1kbo4p2sgigpuf0fqzpskf0.png)
![\implies x=2, -3](https://img.qammunity.org/2023/formulas/mathematics/college/1nt1l7q4kdbnm786ad7awethl0slbb3uch.png)
From inspection of the graph:
- The x-value of point A is positive ⇒ x = 2
- The x-value of point B is negative ⇒ x = -3
To find the y-values, substitute the found x-values into either of the equations:
![\begin{aligned} \textsf{Point A}: \quad 2x+6 & =y\\2(2)+6 & =10\\ \implies & (2, 10)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/7sejdqpmdzvpnzmuibhkrivrfvmlafkitm.png)
![\begin{aligned} \textsf{Point B}: \quad -2x^2+18 & =y\\-2(-3)^2+18 & =0\\ \implies & (-3,0)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/ik2jcbupoywx4zo8dzo95cyy0owt2akyun.png)
Therefore, point A is (2, 10) and point B is (-3, 0).
Part (b)
If the distance between points C and D is 28 units, the y-value of point D will be 28 less than the y-value of point C. The x-values of the two points are the same.
Therefore:
![\textsf{Equation 1}: \quad y=2x+6](https://img.qammunity.org/2023/formulas/mathematics/college/rj8odt0o7ol7tsy7qebv1vlay4phgdn1em.png)
![\textsf{Equation 2}: \quad y-28=-2x^2+18](https://img.qammunity.org/2023/formulas/mathematics/college/2n2tn5van17wyouilwr6umrq81dllxgjvx.png)
As the x-values are the same, substitute the first equation into the second equation and solve for x to find the x-value of points C and D:
![\implies 2x+6-28=-2x^2+18](https://img.qammunity.org/2023/formulas/mathematics/college/jtuxp3f9yigzq19ouz7bwis2caslasru2k.png)
![\implies 2x^2+2x-40=0](https://img.qammunity.org/2023/formulas/mathematics/college/n8mrssenzgu2o6f4oh8ibvbao62sxh7atj.png)
![\implies 2(x^2+x-20)=0](https://img.qammunity.org/2023/formulas/mathematics/college/uc6wpffhfpg18s9ns7b1bi3niqrk6t1yx7.png)
![\implies x^2+x-20=0](https://img.qammunity.org/2023/formulas/mathematics/college/mw714ehtamdyot20z7dx88cmtlqnpxkxyf.png)
![\implies x^2+5x-4x-20=0](https://img.qammunity.org/2023/formulas/mathematics/college/3noir4z1n3rglu5dikqtyboq3qbdsmj8qq.png)
![\implies x(x+5)-4(x+5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/7zs2j1a72hdd8nrkoeii9uyo7oxke9em73.png)
![\implies (x-4)(x+5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/29azav8ndtxrid4p1md0s3gohnwum85ck6.png)
![\implies x=4,-5](https://img.qammunity.org/2023/formulas/mathematics/college/tb5g6hhh45xjr6wb61vd9pc6726x7f8m0p.png)
From inspection of the given graph, the x-value of points C and D is negative, therefore x = -5.
To find the y-value of points C and D, substitute the found value of x into the two original equations of the lines:
![\begin{aligned} \textsf{Point C}: \quad 2x+6 & =y\\2(-5)+6 & =-4\\ \implies & (-5,-4)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/cmmk1j2l17wzweuby8hgj5ctxl5vw3us2p.png)
![\begin{aligned} \textsf{Point D}: \quad -2x^2+18 & = y \\ -2(-5)^2+18 & =-32\\ \implies & (-5, -32)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/n71h5rlgf751s6qz45gxat5j96g9buzqah.png)
Therefore, point C is (-5, -4) and point D is (-5, -32).