9. The curve passes through the point (-1, -3), which means
![-3 = a(-1) + \frac b{-1} \implies a + b = 3](https://img.qammunity.org/2023/formulas/mathematics/college/bglq6cgziqbksj20975oifkkjx471jz03s.png)
Compute the derivative.
![y = ax + \frac bx \implies (dy)/(dx) = a - \frac b{x^2}](https://img.qammunity.org/2023/formulas/mathematics/college/2mi2kn69t87crlx2cl7qoy1hjem6gj4591.png)
At the given point, the gradient is -7 so that
![-7 = a - \frac b{(-1)^2} \implies a-b = -7](https://img.qammunity.org/2023/formulas/mathematics/college/cw0jfze7hiij2mx2snd9nccux4kgqh04es.png)
Eliminating
, we find
![(a+b) + (a-b) = 3+(-7) \implies 2a = -4 \implies \boxed{a=-2}](https://img.qammunity.org/2023/formulas/mathematics/college/cagd9kev4zs27mpxym6ubkaahu75ry9640.png)
Solve for
.
![a+b=3 \implies b=3-a \implies \boxed{b = 5}](https://img.qammunity.org/2023/formulas/mathematics/college/v191ey08f6rrsh7hua444pns8g7mr6luyv.png)
10. Compute the derivative.
![y = \frac{x^3}3 - \frac{5x^2}2 + 6x - 1 \implies (dy)/(dx) = x^2 - 5x + 6](https://img.qammunity.org/2023/formulas/mathematics/college/3c8ksie4ony8ui89olqdt4la31i41tkfu1.png)
Solve for
when the gradient is 2.
![x^2 - 5x + 6 = 2](https://img.qammunity.org/2023/formulas/mathematics/college/kqam5kdcffklwv1jrn0synln2dnla7ov9h.png)
![x^2 - 5x + 4 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/wk0aq4ra00if44qtxa6fiwel2h2ss68w7w.png)
![(x - 1) (x - 4) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/tmwhunz9sv87qz6xdjbhw4qlv2th2yxdcd.png)
![\implies x=1 \text{ or } x=4](https://img.qammunity.org/2023/formulas/mathematics/college/slxdrh7u0g9olog07li3hu8nlhkc0pdrb0.png)
Evaluate
at each of these.
![\boxed{x=1} \implies y = \frac{1^3}3 - \frac{5\cdot1^2}2 + 6\cdot1 - 1 = \boxed{y = \frac{17}6}](https://img.qammunity.org/2023/formulas/mathematics/college/lzu7rt467inhh6zpg5aq37suvxk6ihn8em.png)
![\boxed{x = 4} \implies y = \frac{4^3}3 - \frac{5\cdot4^2}2 + 6\cdot4 - 1 \implies \boxed{y = \frac{13}3}](https://img.qammunity.org/2023/formulas/mathematics/college/w80oy0rnog2uxemjw8qftecfajslblqcn2.png)
11. a. Solve for
where both curves meet.
![\frac{x^3}3 - 2x^2 - 8x + 5 = x + 5](https://img.qammunity.org/2023/formulas/mathematics/college/cy6i49uhjaww8u6xj824bi7bm50hz95yco.png)
![\frac{x^3}3 - 2x^2 - 9x = 0](https://img.qammunity.org/2023/formulas/mathematics/college/mewvxa9b7b0ekbkrmxmsk3mtufzduz4v5p.png)
![\frac x3 (x^2 - 6x - 27) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/5uxkxw5seudzg2y9l3irtoohgvqim9xi0j.png)
![\frac x3 (x - 9) (x + 3) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/mp7c5dq4znotrveokdxu992cqld3lyqqtr.png)
![\implies x = 0 \text{ or }x = 9 \text{ or } x = -3](https://img.qammunity.org/2023/formulas/mathematics/college/g37l1zcb2hxpbb7njjnqxb8m3cx74m5nxn.png)
Evaluate
at each of these.
![A:~~~~ \boxed{x=0} \implies y=0+5 \implies \boxed{y=5}](https://img.qammunity.org/2023/formulas/mathematics/college/t0at3bykyjrzqb3vj7kdofhk61t8pcokor.png)
![B:~~~~ \boxed{x=9} \implies y=9+5 \implies \boxed{y=14}](https://img.qammunity.org/2023/formulas/mathematics/college/xzzimfligbmlv8lih5pd04dscflbfcy1lp.png)
![C:~~~~ \boxed{x=-3} \implies y=-3+5 \implies \boxed{y=2}](https://img.qammunity.org/2023/formulas/mathematics/college/jm079b5yku5qna2yt4o4htdmyvzb9adc80.png)
11. b. Compute the derivative for the curve.
![y = \frac{x^3}3 - 2x^2 - 8x + 5 \implies (dy)/(dx) = x^2 - 4x - 8](https://img.qammunity.org/2023/formulas/mathematics/college/trhm1fc1g5uewldrkrg7ci78l6oryhqof6.png)
Evaluate the derivative at the
-coordinates of A, B, and C.
![A: ~~~~ x=0 \implies (dy)/(dx) = 0^2-4\cdot0-8 \implies \boxed{(dy)/(dx) = -8}](https://img.qammunity.org/2023/formulas/mathematics/college/61amjjz2eavur67frvt9jlkacs538as3p4.png)
![B:~~~~ x=9 \implies (dy)/(dx) = 9^2-4\cdot9-8 \implies \boxed{(dy)/(dx) = 37}](https://img.qammunity.org/2023/formulas/mathematics/college/2p4h3xm38ulc9hwl56v475ph8pm4pwyyrx.png)
![C:~~~~ x=-3 \implies (dy)/(dx) = (-3)^2-4\cdot(-3)-8 \implies \boxed{(dy)/(dx) = 13}](https://img.qammunity.org/2023/formulas/mathematics/college/e1jwd4pwz0p0eg4dc9enymiklqqgwyazmc.png)
12. a. Compute the derivative.
![y = 4x^3 + 3x^2 - 6x - 1 \implies \boxed{(dy)/(dx) = 12x^2 + 6x - 6}](https://img.qammunity.org/2023/formulas/mathematics/college/deiccep7zugy0yo08hz5i180zqjbbmm98q.png)
12. b. By completing the square, we have
![12x^2 + 6x - 6 = 12 \left(x^2 + \frac x2\right) - 6 \\\\ ~~~~~~~~ = 12 \left(x^2 + \frac x2 + \frac1{4^2}\right) - 6 - (12)/(4^2) \\\\ ~~~~~~~~ = 12 \left(x + \frac14\right)^2 - \frac{27}4](https://img.qammunity.org/2023/formulas/mathematics/college/f7idqefpafxyew9476w8uro6rxbuzy7213.png)
so that
![(dy)/(dx) = 12 \left(x + \frac14\right)^2 - \frac{27}4 \ge 0 \\\\ ~~~~ \implies 12 \left(x + \frac14\right)^2 \ge \frac{27}4 \\\\ ~~~~ \implies \left(x + \frac14\right)^2 \ge (27)/(48) = \frac9{16} \\\\ ~~~~ \implies \left|x + \frac14\right| \ge \sqrt{\frac9{16}} = \frac34 \\\\ ~~~~ \implies x+\frac14 \ge \frac34 \text{ or } -\left(x+\frac14\right) \ge \frac34 \\\\ ~~~~ \implies \boxed{x \ge \frac12 \text{ or } x \le -1}](https://img.qammunity.org/2023/formulas/mathematics/college/tia0lo1wannepxd6rv2b4ifipoz01giw03.png)
13. a. Compute the derivative.
![y = x^3 + x^2 - 16x - 16 \implies \boxed{(dy)/(dx) = 3x^2 - 2x - 16}](https://img.qammunity.org/2023/formulas/mathematics/college/p311q8cgalf8rujcj2l1chkdmf3ynp71n8.png)
13. b. Complete the square.
![3x^2 - 2x - 16 = 3 \left(x^2 - \frac{2x}3\right) - 16 \\\\ ~~~~~~~~ = 3 \left(x^2 - \frac{2x}3 + \frac1{3^2}\right) - 16 - \frac13 \\\\ ~~~~~~~~ = 3 \left(x - \frac13\right)^2 - \frac{49}3](https://img.qammunity.org/2023/formulas/mathematics/college/bchxywyqo557wo01l8b4z0ja8cow7xv3bo.png)
Then
![(dy)/(dx) = 3 \left(x - \frac13\right)^2 - \frac{49}3 \le 0 \\\\ ~~~~ \implies 3 \left(x - \frac13\right)^2 \le \frac{49}3 \\\\ ~~~~ \implies \left(x - \frac13\right)^2 \le \frac{49}9 \\\\ ~~~~ \implies \left|x - \frac13\right| \le \sqrt{\frac{49}9} = \frac73 \\\\ ~~~~ \implies x - \frac13 \le \frac73 \text{ or } -\left(x-\frac13\right) \le \frac73 \\\\ ~~~~ \implies \boxed{x \le 2 \text{ or } x \ge \frac83}](https://img.qammunity.org/2023/formulas/mathematics/college/8groxohrmexiecn42cpw76xg8392ezqgzw.png)