(a) We want to find a scalar function
such that
. This means
![(\partial f)/(\partial x) = 2xy + 24](https://img.qammunity.org/2023/formulas/mathematics/college/6gjrwqh6y56w99tw7ofi9rwil3jkqa2i0e.png)
![(\partial f)/(\partial y) = x^2 + 16](https://img.qammunity.org/2023/formulas/mathematics/college/g3tepqg2iavjgqgvi1252f3dxwvw1lyanx.png)
Looking at the first equation, integrating both sides with respect to
gives
![f(x,y) = x^2y + 24x + g(y)](https://img.qammunity.org/2023/formulas/mathematics/college/ficu0052g51i123xauf75dnyp24alircbb.png)
Differentiating both sides of this with respect to
gives
![(\partial f)/(\partial y) = x^2 + 16 = x^2 + (dg)/(dy) \implies (dg)/(dy) = 16 \implies g(y) = 16y + C](https://img.qammunity.org/2023/formulas/mathematics/college/c4rtabet8wf87iknvgji3bxqx57opfp7sy.png)
Then the potential function is
![f(x,y) = \boxed{x^2y + 24x + 16y + C}](https://img.qammunity.org/2023/formulas/mathematics/college/24mghr7a9wfm4cc0ylko6lckxm0xmeuz25.png)
(b) By the FTCoLI, we have
![\displaystyle \int_((1,1))^((-1,2)) \mathbf F \cdot d\mathbf r = f(-1,2) - f(1,1) = 10-41 = \boxed{-31}](https://img.qammunity.org/2023/formulas/mathematics/college/2zut2f4h94uk2h3d25w8dlrbqrkn6teygs.png)
![\displaystyle \int_((-1,2))^((0,4)) \mathbf F \cdot d\mathbf r = f(0,4) - f(-1,2) = 64 - 41 = \boxed{23}](https://img.qammunity.org/2023/formulas/mathematics/college/re3z1orckd8pozcds5nlhb2zdu3hhf61sp.png)
![\displaystyle \int_((0,4))^((2,3)) \mathbf F \cdot d\mathbf r = f(2,3) - f(0,4) = 108 - 64 = \boxed{44}](https://img.qammunity.org/2023/formulas/mathematics/college/pl6i8iuzr14ktgtiz11m3cuzll5dz2sfnx.png)