131k views
1 vote
Starting from the geometric series, use power series operations to

determine the Maclaurin series. See picture

Starting from the geometric series, use power series operations to determine the Maclaurin-example-1
User Richard A
by
5.6k points

1 Answer

7 votes

a. By replacing
x with
-x^2 in the power series, we get


\displaystyle \frac1{1+x^2} = \sum_(n=0)^\infty (-x^2)^n = \sum_(n=0)^\infty (-1)^n x^(2n)

Integrate both sides to recover
\arctan(x) on the left.


\displaystyle \int (dx)/(1+x^2) = \int \sum_(n=0)^\infty (-x^2)^n = \sum_(n=0)^\infty (-1)^n x^(2n) \, dx


\displaystyle \arctan(x) = C + \sum_(n=0)^\infty ((-1)^n)/(2n+1) x^(2n+1) \, dx

By letting
x=0 on both sides, we find
C=0, so that


\displaystyle \arctan(x) = \sum_(n=0)^\infty ((-1)^n)/(2n+1) x^(2n+1) \, dx

Then dividing both sides by
x gives


\displaystyle \boxed{\frac{\arctan(x)}x = \sum_(n=0)^\infty ((-1)^n)/(2n+1) x^(2n) \, dx}

b. Let
x=\frac1{\sqrt3}. Then


\displaystyle \frac{\arctan\left(\frac1{\sqrt3}\right)}{\frac1{\sqrt3}} = \sum_(n=0)^\infty ((-1)^n)/(2n+1) \left(\frac1\sqrt3\right)^(2n)


\displaystyle \sqrt3 \arctan\left(\frac1{\sqrt3}\right) = \sum_(n=0)^\infty \frac1{2n+1} \left(-\frac13\right)^n

Taking the first few terms from the infinite series, we can approximate


n=0 \implies \sqrt3\arctan\left(\frac1{\sqrt3}\right) \approx 1


0\le n\le1 \implies \sqrt3\arctan\left(\frac1{\sqrt3}\right) \approx 1+\frac13\left(-\frac13\right) = \frac89

which together suggest the value we want is bounded between 8/9 and 9/9 = 1, hence
\boxed{p=8}.

Since the series is alternating and converges on
-1<x<0\cup0<x<1,


\displaystyle \left| \sum_(n=0)^\infty a_n - \sum_(n=0)^0 a_n \right| < |a_1| = \left|\frac13 \left(-\frac13\right)^1\right| = \frac19

and


\displaystyle \left| \sum_(n=0)^\infty a_n - \sum_(n=0)^1 a_n \right| < |a_2| = \left|\frac15 \left(-\frac13\right)^2\right| = \frac1{45}

which tells us the first approximation is off by at most 1/9 from the actual value of
\frac\pi{2\sqrt3}, whereas the second approximation is off by at most 1/45 from the actual value. In other words, the second approximation is closer, so
\frac\pi{2\sqrt3} is closer to
\frac p9 :


\frac89 \approx 0.8889


(\pi)/(2\sqrt3)\approx0.9069


\frac99 = 1

User Sandesh K
by
4.7k points