134k views
2 votes

\: \: \: \: \: \: \: \: \: \: \: n\\ evaluate \: \: \: \: \: Σ \: (nCi)\\ \: \: \: \: \: \: \: \: \: \: \: \: i = 0

Evaluate the summation​

User Galcyurio
by
5.0k points

1 Answer

4 votes

Assuming you mean


\displaystyle \sum_(i=0)^n {}_nC_(i)

where


{}_n C_i = \dbinom ni = (n!)/(i! (n-i)!)

we have by the binomial theorem


\displaystyle (1 + 1)^n = \sum_(i=0)^n {}_nC_(i) \cdot 1^i \cdot 1^(n-i)

so that the given sum has a value of
\boxed{2^n}.

User Eco
by
4.6k points