235k views
0 votes
Solve the system u=3x-4y, v=x+4y for x and y in terms of u and v. then find the value of the jacobian

User Anhnt
by
5.7k points

1 Answer

4 votes

Eliminate
y.


u + v = (3x - 4y) + (x + 4y) = 4x \implies x = \frac{u+v}4

Eliminate
x.


u - 3v = (3x - 4y) - 3 (x + 4y) = -16y \implies y = (3v-u)/(16)

The Jacobian for this change of coordinates is


J = \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} = \begin{bmatrix} \frac14 & \frac14 \\\\ -\frac1{16} & \frac3{16} \end{bmatrix}

with determinant


\det(J) = \frac14\cdot\frac3{16} - \frac14\cdot\left(-\frac1{16}\right) = \frac1{16}

User Csharpforevermore
by
5.6k points