44,024 views
25 votes
25 votes
A(x, 1), B(5,3) and C(4,-3) are the vertices of triangle ABC. If AB=AC, find the value of x​

User Djork
by
2.9k points

2 Answers

16 votes
16 votes


\\ \rm\longmapsto AB=AC


\\ \rm\longmapsto √((x-5)^2+(1-5)^2)=√((x-4)^2+(1+3)^2)


\\ \rm\longmapsto (x-5)^2+(-2)^2=(x-4)^2+4^2


\\ \rm\longmapsto (x-5)^2+4=(x-4)^2+16


\\ \rm\longmapsto (x-5)^2-(x-4)^2=16-4=12


\\ \rm\longmapsto x^2-10x+25-x^2+8x-16=12


\\ \rm\longmapsto -2x+9=12


\\ \rm\longmapsto -2x=12-9=3


\\ \rm\longmapsto x=(3)/(-2)=-1.5

User Greg Bray
by
3.0k points
22 votes
22 votes

Answer:

  • x = - 1.5

Explanation:

Given vertices:

  • A(x, 1), B(5,3) and C(4,-3)

Use distance formula to find the side lengths:

  • AB =
    √((5 - x)^2+(3-1)^2) = √(x^2-10x + 25 + 4) = √(x^2-10x + 29)
  • AC =
    √((4-x)^2+(-3-1)^2) = √(x^2-8x+16+16) =√(x^2-8x + 32)

Since AB = AC, compare the squares and solve for x:

  • x² - 10x + 29 = x² - 8x + 32
  • 10x - 8x = 29 - 32
  • 2x = - 3
  • x = - 1.5
User Ivelina
by
2.7k points