96.5k views
1 vote
ASSIGNMENT

Evaluate -

\sf \: \displaystyle\int_( - 1)^(25)\sf {e}^(x - [x])
- Need help! ​

2 Answers

7 votes


\\ \rm\hookrightarrow \displaystyle\int\limits_(-1)^(25)e^(x-[x])dx

  • [x] is x if x is a real number


\\ \rm\hookrightarrow \displaystyle\int\limits_(-1)^(25)e^(x-x)dx


\\ \rm\hookrightarrow \displaystyle\int\limits_(-1)^(25)e^0dx

  • e⁰=1


\\ \rm\hookrightarrow \displaystyle\int\limits_(-1)^(25)dx


\\ \rm\hookrightarrow \left[x\right]_(-1)^(25)


\\ \rm\hookrightarrow 25-(-1)


\\ \rm\hookrightarrow 25+1


\\ \rm\hookrightarrow 26

User Atxdba
by
4.3k points
2 votes

Answer:

26

Step-by-step explanation:


\int\limits^(25)_(-1) {e^(x-[x])} \, dx

simplify


\int\limits^(25)_(-1) {e^(0) \, dx

any variable to the power 0 is 1


\int\limits^(25)_(-1) 1 \, dx

integrating 1 gives x


\left[ \:x \: \right]^(25)_(-1)

apply limits


25 - (-1)

add terms


26

User Www
by
4.2k points