155k views
5 votes
Please help! find the distance of AG if A (4,4) and G (-1,-1)

User Lim
by
8.7k points

2 Answers

7 votes

  • The distance between two points
    \rm{A(x_1,y_1)} and
    \rm{B(x_2,y_2)} is given by the formula,


\rm{AB= √((x_2-x_1)^2+(y_2-y_1)^2) }

Proof:


\rm{Let \: X'OX \: and \: YOY' \: be \: the \: z-axis \: and \: y-axis \: respectively. Then, O \: is \: the \: origin.}


\rm{Let \: A(x_1,y_1) \: and \: B(x_2,y_2) \: be \: the \: given \: points.}


\rm{Draw \: AL \perp \: OX, BM \perp \: OX \: and \: AN \perp BM }

Now,


\rm{OL=x_1,OM=x_2,AL=y_1 \: and \: BM=y_2}


\rm\therefore{AN=LM=(OM-OL)=(x_2-x_1)}


\: \: \: \: \rm{BN=(BM-NM)=(BM-AL)=(y_2-y_1)}


\rm{In \: right \: angled \: \triangle ANB, by \: Pythagorean \: theorem,}

We have,


\: \: \: \: \rm{AB^2=AN^2+BN^2}


\rm{or,AB^2=(x_2-x_1)^2+(y_2-y_1)^2}


\rm\therefore AB= √((x_2-x_1)^2+(y_2-y_1)^2)

The Given question,

Find the distance of AG if A (4,4) and G (-1,-1).

Solution,

The given points are A(4,4) and G(-1,-1).

Then,


\rm{(x_1=4,y_1=4) and (x_2=-1,y_2=-1)}

We know that,

The distance formula,


\rm{AG= √((x_2-x_1)^2+(y_2-y_1)^2) }


\: \: \: \: \: \: \: \: = \sqrt{ {( - 1 - 4)}^(2) + {( - 1 - 4)}^(2) }


\: \: \: \: \: \: \: \: = \sqrt{ {( - 5)}^(2) + {( - 5)}^(2) }


\: \: \: \: \: \: \: \: = √(25 + 25)


\: \: \: \: \: \: \: \: = √(50)


\: \: \: \: \: \: \: \: = √((2)(25))


\: \: \: \: \: \: \: \: = √((2)(5)(5))


\: \: \: \: \: \: \: \: = \sqrt{(2)( {5}^(2)) }


\rm \: \: \: \: \: \: \: \: = 5 √(2) \: units

Answered by:


\frak{\red{moonlight123429}}

User MarJamRob
by
8.3k points
4 votes


{\qquad\qquad\huge\underline{{\sf Answer}}}

Let's solve ~

By using distance formula :


\qquad \sf  \dashrightarrow \: \sqrt{(x_2 - x_1) {}^(2) + (y_2 - y_1) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{(4 - ( - 1)) {}^(2) + (4 - ( - 1)) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{(4 + 1) {}^(2) + (4 + 1) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{2(5) {}^(2) }


\qquad \sf  \dashrightarrow \: 5 √(2 )\: \: units

User BVantur
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories