140k views
2 votes
Solve the following
8903=e

Solve the following 8903=e-example-1
User Chaooder
by
3.1k points

1 Answer

6 votes


\huge\text{Hey there!}


\huge\textbf{Equation:}


\mathsf{8,903 = e^(5x)}}


\huge\textbf{Simplify:}


\mathsf{8,903 = e^(5x)}}


\mathsf{e^(5x) = 8,903}}


\huge\textbf{Solve for the exponent:}


\large\textsf{We get: }\downarrow\\\\\mathsf{2.718282^(5x)=8903}


\huge\textbf{Take the logarithm from both sides:}


\mathsf{log(2.718282^(5x)) = log(8,903x)}


\large\textsf{We get:}\\\\\mathsf{5x * log(2.718282)=log(8903)}


\huge\textbf{Simplify it:}


\mathsf{5x = (log(8903))/(log(2.718282))}


\large\textsf{We get: }\\\\\mathsf{5x = 9.094143}


\huge\textbf{Divide 5 to both sides:}


\mathsf{(5x)/(5) = (9.094143)/(5)}


\huge\textbf{Simplify it:}


\mathsf{x= (9.094143)/(5)}


\mathsf{x = 1.818829}


\mathsf{x \approx 2}


\huge\textbf{Therefore, your answer should be:}


\huge\boxed{\mathsf{x =}\frak{\ 1.818829}}\huge\checkmark


\large\textbf{Or if you're estimating your answer}\downarrow


\huge\boxed{\mathsf{x \approx }\frak{\ 2}}\huge\checkmark


\huge\text{Good luck on your assignment \& enjoy your day!}

~
\frak{Amphitrite1040:)}

User ShaulF
by
3.4k points