Answer:
A)
![\begin{array}c\cline{1-3} t & H(t) & g(t)\\\cline{1-3} 1 & 60 & 20.4\\\cline{1-3} 2 & 76 & 30.8\\\cline{1-3} 3 & 60 & 41.2\\\cline{1-3} 4 & 12 & 51.6\\\cline{1-3} \end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ctbf81mzh2ein1sbch2xdndcuithd6c7g6.png)
Between 3 and 4 seconds.
B) The baseballs will collide between 3 and 4 seconds.
Explanation:
Given functions:
![H(t)=-16t^2+64t+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/6hyvwto6ushfvublm156qhf2et0jspi0r7.png)
![g(t)=10+10.4t](https://img.qammunity.org/2023/formulas/mathematics/high-school/ytz5tmirwddcastedls3j0ii1evd9curg4.png)
Part A
Substitute the values of t = 1, 2, 3 and 4 into the two functions:
![H(1)=-16(1)^2+64(1)+12=60](https://img.qammunity.org/2023/formulas/mathematics/high-school/c7xmbki6rfw65yh68sn4k35mw1iy69f0cn.png)
![H(2)=-16(2)^2+64(2)+12=76](https://img.qammunity.org/2023/formulas/mathematics/high-school/haqn8qolp01cn5evvdfberae82dgpwwtnm.png)
![H(3)=-16(3)^2+64(3)+12=60](https://img.qammunity.org/2023/formulas/mathematics/high-school/jm0qxfgzv2wwe4urgb1xtdcz6x1spg6h5g.png)
![H(4)=-16(4)^2+64(4)+12=12](https://img.qammunity.org/2023/formulas/mathematics/high-school/7ckiwm47262rtufcgzarzj31tt6u8o9dzg.png)
![g(1)=10+10.4(1)=20.4](https://img.qammunity.org/2023/formulas/mathematics/high-school/tgxwzqqiqll4l2ibvfatnrg2brqv3ttk8u.png)
![g(2)=10+10.4(2)=30.8](https://img.qammunity.org/2023/formulas/mathematics/high-school/httgjwpymvn8d2u9ibf45mzj6laj9vablx.png)
![g(3)=10+10.4(3)=41.2](https://img.qammunity.org/2023/formulas/mathematics/high-school/stpaumtgr1hwo3w1tkswnzgc2j55zjb352.png)
![g(4)=10+10.4(4)=51.6](https://img.qammunity.org/2023/formulas/mathematics/high-school/guqyrzhsn85uw60m0cig9fx3qsb6ugw8qu.png)
Create a table with the found values:
![\begin{array}c\cline{1-3} t & H(t) & g(t)\\\cline{1-3} 1 & 60 & 20.4\\\cline{1-3} 2 & 76 & 30.8\\\cline{1-3} 3 & 60 & 41.2\\\cline{1-3} 4 & 12 & 51.6\\\cline{1-3} \end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ctbf81mzh2ein1sbch2xdndcuithd6c7g6.png)
The solution to H(t) = g(t) is between 3 and 4 seconds as:
When t = 3, H(t) > g(t)
When t = 4, H(t) < g(t)
To prove this, equate the equations and solve for t:
![\implies -16t^2+64t+12=10+10.4t](https://img.qammunity.org/2023/formulas/mathematics/high-school/1uj0xymwl2lr283fkfk7ha60fz68yzf3cx.png)
![\implies -16t^2+53.6t+2=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/b1ab43fc3h6ap87hrlq7r68lnwzebpegpy.png)
Using the Quadratic Formula to solve for t:
![x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/physics/high-school/srcbg1ukkzuvprrhg8mwvjtfb23umv2fbh.png)
![\implies t=(-53.6 \pm √(53.6^2-4(-16)(2)) )/(2(-16))](https://img.qammunity.org/2023/formulas/mathematics/high-school/3gn1offvmbt8vuj0t09k35f7po434kmf0o.png)
![\implies t=(53.6 \pm √(3000.96))/(32)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ma6vbu31edx55dlzopq4wmjdd18g16nl54.png)
![\implies t=3.39, -0.04\:\:(\sf 2\:d.p.)](https://img.qammunity.org/2023/formulas/mathematics/high-school/41y6qlt8t04w45ctglyg6zm43yodl83voe.png)
As time is positive, t = 3.39 s (which is between 3 and 4 seconds).
Part B
When the two baseballs are at the same height they will collide.
Therefore, the baseballs will collide between 3 and 4 seconds (when t = 3.39 s).