134k views
3 votes
Find the product of:

(3x - 4)(2x^2 + 2x - 1).

A. 6x^3 + 2x^2 - 5x + 4
B. 6x^3 + 14x^2 - 11x + 4
C. 6x^3 - 14^2 - 5x + 4
D. 6x^3 - 2x^2 - 11x + 4

Find the product of: (3x - 4)(2x^2 + 2x - 1). A. 6x^3 + 2x^2 - 5x + 4 B. 6x^3 + 14x-example-1
User Joram
by
3.9k points

2 Answers

6 votes

Answer:


6x^3-2x^2-11x+4

Explanation:

Given expression:


(3x-4)(2x^2+2x-1)

Distribute the parentheses:


\implies 3x(2x^2+2x-1)-4(2x^2+2x-1)


\implies 3x \cdot 2x^2+3x \cdot 2x +3x \cdot -1 -4 \cdot 2x^2-4 \cdot 2x-4 \cdot -1


\implies 6x^3+6x^2 -3x -8x^2-8x+4

Collect like terms:


\implies 6x^3+6x^2-8x^2 -3x -8x+4

Combine like terms:


\implies 6x^3-2x^2-11x+4

User Hansy
by
3.4k points
3 votes

Answer:

6x^3 -2x^2-11x + 4

Explanation:

(3x - 4)(2x^2 + 2x - 1)

(3x - 4)(2x^2 + 2x - 1)

[(3x)(2x^2 + 2x - 1)] + [-4(2x^2 + 2x - 1)]

6x^3 + 6x^2 - 3x -8x^2 - 8x + 4

6x^3 + [6x^2-8x^2] [- 3x- 8x] + 4

6x^3 -2x^2-11x + 4

User Mike Otharan
by
3.0k points