Answer:
![\huge\boxed{\sf Option \ B}](https://img.qammunity.org/2023/formulas/biology/high-school/8b4mfk8xtkedky1whqm2zjtpi41lbqfnfg.png)
Explanation:
Step 3:
--------------------(1)
The next step will be:
- to find the b² for the expression on the left.
How to find b²:
Take the expression
![\displaystyle x^2 + (bx)/(a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/akr43z4l9eww6qf0ifhvr7y66zr1rtwoil.png)
We can also write it as:
![\displaystyle (x)^2 + 2(x)((b)/(2a) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/aa4v7hxmnu0qvqfo414rgk4h3nvpzlcdab.png)
According to the formula
, the b of this expression is
. So,
b² will be:
![\displaystyle =((b)/(2a) )^2\\\\=(b^2)/(4a^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bnz4v11ws9f6jgt6zgwlu7syrdlkb8ov0l.png)
So, we will add
to both sides in Eq. (1)
For STEP 4, the equation will become:
![\displaystyle x^2+(bx)/(a) + (b^2)/(4a^2) = (-c)/(a) + (b^2)/(4a^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bo13d4ud988ua2me8yy1aak925fy1endwx.png)
![\rule[225]{225}{2}](https://img.qammunity.org/2023/formulas/english/college/eq413d752mwtrwwenrzwldxt4w1olmf1b3.png)