Answer:
Original fraction = ⁴/₇
Explanation:
Numerator: top of the fraction
Denominator: bottom of a fraction
Let x be the original numerator.
If the denominator of a fraction exceeds the numerator by 3:
![\implies (x)/(x+3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fcw9j6qsx62pz0iljgqv8f3c3dc7z53199.png)
If the numerator is doubled and the denominator is increased by 14, then fraction becomes 2/3rd of the original fraction:
![\implies (2x)/(x+3+14)=(2)/(3)\left((x)/(x+3)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hm2n8aigquxc4vhy1vvel8vjmqwpob3ykt.png)
![\implies (2x)/(x+17)=(2x)/(3(x+3))](https://img.qammunity.org/2023/formulas/mathematics/high-school/ta8g54m5ewndid2ehu3kbrpsac392rppoz.png)
![\implies (2x)/(x+17)=(2x)/(3x+9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/o7szu6mqoegtc3ivdgvldfps0v7zx78iu5.png)
Cross multiply:
![\implies 2x(3x+9)=2x(x+17)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1ofw1z0f5cvf5fhnm3e325ymm1mzpfxkw0.png)
Divide both sides by 2x:
![\implies 3x+9=x+17](https://img.qammunity.org/2023/formulas/mathematics/high-school/bvc677f6y1c9gk3vdqdqi1icivc6emzgay.png)
Subtract x from both sides:
![\implies 2x+9=17](https://img.qammunity.org/2023/formulas/mathematics/high-school/j1uj8iaavumbb7tr3busyiujxxuych3jwq.png)
Subtract 9 from both sides:
![\implies 2x=8](https://img.qammunity.org/2023/formulas/mathematics/high-school/bmdszo9oasxt52qymx564o7ty3j99hxs0q.png)
Divide both sides by 2:
![\implies x=4](https://img.qammunity.org/2023/formulas/mathematics/college/kifxyk15mfkhqspaxsrsg3hafyti1m68ly.png)
Substitute the found value of x into the original fraction:
![\implies (4)/(4+3)=(4)/(7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wcbuko98ayz6620unmvcqvi4jwc0iaepb8.png)
Therefore, the original fraction is ⁴/₇.