197k views
5 votes
Sin(4x) in the term of just x
Please help!!

1 Answer

3 votes

I think you mean in terms of
\sin(x)?

Recall Euler's identity


e^(ix) = \cos(x) + i \sin(x)

and de Moivre's theorem


\left(e^(ix)\right)^n = \left(\cos(x) + i \sin(x)\right)^n = \cos(nx) + i \sin(nx) = e^(inx)

where
i=√(-1).

It follows that


\sin(4x) = \mathrm{Im}\left(\cos(x) + i \sin(x)\right)^4

By the binomial theorem, expanding the right side gives


\cos^4(x) + 4i \cos^3(x) \sin(x) - 6\cos^2(x) \sin^2(x) - 4i \cos(x) \sin^3(x) + \sin^4(x)

and so


\sin(4x) = 4\cos^3(x) \sin(x) - 4 \cos(x) \sin^3(x)

We can factorize this as


\sin(4x) = 4 \cos(x) \sin(x) \left(\cos^2(x) - \sin^2(x)\right)

and using the Pythagorean identity


\cos^2(x)+\sin^2(x) = 1 \implies \cos(x) = \pm √(1-\sin^2(x))

this reduces to


\sin(4x) = \pm 4 √(1-\sin^2(x)) \sin(x) (1 - 2 \sin^2(x))

User Merovex
by
7.5k points