163k views
2 votes
Help me with this question please

Help me with this question please-example-1
User Avolquez
by
8.9k points

1 Answer

3 votes

Answer:


(991)/(40√(2))

Explanation:

Given expression:


√(72)-(48)/(√(50))-(45)/(√(128))+2√(98)

Rewrite 72 as 36·2, 50 as 25·2, 128 as 64·2 and 98 as 49·2:


\implies √(36 \cdot 2)-(48)/(√(25 \cdot 2))-(45)/(√(64 \cdot 2))+2√(49 \cdot 2)


\textsf{Apply radical rule} \quad √(ab)=√(a)√(b):


\implies √(36)√(2)-(48)/(√(25)√(2))-(45)/(√(64)√( 2))+2√(49)√(2)

Rewrite 36 as 6², 25 as 5², 64 as 8² and 49 as 7²:


\implies √(6^2)√(2)-(48)/(√(5^2)√(2))-(45)/(√(8^2)√( 2))+2√(7^2)√(2)


\textsf{Apply radical rule} \quad √(a^2)=a, \quad a \geq 0


\implies 6√(2)-(48)/(5√(2))-(45)/(8√( 2))+2\cdot 7√(2)

Simplify:


\implies 6√(2)-(48)/(5√(2))-(45)/(8√( 2))+14√(2)

Combine like terms:


\implies 20√(2)-(48)/(5√(2))-(45)/(8√( 2))

Make the denominators of the two fractions the same:


\implies 20√(2)-(384)/(40√(2))-(225)/(40√( 2))

Rewrite 20√2 as a fraction with denominator 40√2:


\implies 20√(2)\cdot(40√(2))/(40√(2))-(384)/(40√(2))-(225)/(40√( 2))


\implies (1600)/(40√(2))-(384)/(40√(2))-(225)/(40√( 2))

Combine fractions:


\implies (991)/(40√(2))

User Simon Legg
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories