163k views
2 votes
Help me with this question please

Help me with this question please-example-1
User Avolquez
by
4.3k points

1 Answer

3 votes

Answer:


(991)/(40√(2))

Explanation:

Given expression:


√(72)-(48)/(√(50))-(45)/(√(128))+2√(98)

Rewrite 72 as 36·2, 50 as 25·2, 128 as 64·2 and 98 as 49·2:


\implies √(36 \cdot 2)-(48)/(√(25 \cdot 2))-(45)/(√(64 \cdot 2))+2√(49 \cdot 2)


\textsf{Apply radical rule} \quad √(ab)=√(a)√(b):


\implies √(36)√(2)-(48)/(√(25)√(2))-(45)/(√(64)√( 2))+2√(49)√(2)

Rewrite 36 as 6², 25 as 5², 64 as 8² and 49 as 7²:


\implies √(6^2)√(2)-(48)/(√(5^2)√(2))-(45)/(√(8^2)√( 2))+2√(7^2)√(2)


\textsf{Apply radical rule} \quad √(a^2)=a, \quad a \geq 0


\implies 6√(2)-(48)/(5√(2))-(45)/(8√( 2))+2\cdot 7√(2)

Simplify:


\implies 6√(2)-(48)/(5√(2))-(45)/(8√( 2))+14√(2)

Combine like terms:


\implies 20√(2)-(48)/(5√(2))-(45)/(8√( 2))

Make the denominators of the two fractions the same:


\implies 20√(2)-(384)/(40√(2))-(225)/(40√( 2))

Rewrite 20√2 as a fraction with denominator 40√2:


\implies 20√(2)\cdot(40√(2))/(40√(2))-(384)/(40√(2))-(225)/(40√( 2))


\implies (1600)/(40√(2))-(384)/(40√(2))-(225)/(40√( 2))

Combine fractions:


\implies (991)/(40√(2))

User Simon Legg
by
3.3k points