65,877 views
5 votes
5 votes
1. Find the domain and range of the function
f(x)=√1-4x².

User N V
by
3.4k points

2 Answers

1 vote
1 vote


f(x) = \sqrt{1 - 4{ x}^(2) }


1 - 4x {}^(2) \geqslant 0


- \infty \: \: \: \: \: \: \: \: - 0.5 \: \: \: \: \: \: \: \: \: 0.5 \: \: \: \: \: \: \: \: \infty \\ - \: \: \: \: \: \: \: \: \: \: \: \: \: \:0 \: \: \: \: \: + \: \: \: \:0 \: \: \: \: \: -


domain \\ [ \: -0.5 \: , \: 0.5 \: ]


g(x) = 1 - 4x {}^(2) \\ g'(x) = - 8x \\ g'(x) = 0 \\ x = 0 \\ g(0) = 1 - 4(0) = 1 \\ maximum \: = 1


range \\ [ \: 0 \: , \: 1 \: ]

User Itay Marom
by
3.3k points
1 vote
1 vote

Answer:


\textsf{Domain}: \quad \left[-(1)/(2), (1)/(2)\right]


\textsf{Range}: \quad [0, 1]

Explanation:

Domain: set of all possible input values (x-values)

Range: set of all possible output values (y-values)

Given function:


f(x)=√(1-4x^2)

As negative numbers don't have real square roots:


\implies 1-4x^2\geq 0

Therefore, to find the domain, solve the inequality.

Subtract 1 from both sides:


\implies -4x^2\geq -1

Divide both sides by -1 (reverse the inequality):


\implies 4x^2 \leq 1

Divide both sides by 4:


\implies x^2\leq (1)/(4)


\textsf{For }\:a^n \leq b,\:\:\textsf{if }n\textsf{ is even then }-\sqrt[n]{b} \leq a \leq \sqrt[n]{b}:


\implies -\sqrt[2]{(1)/(4)} \leq x \leq \sqrt[2]{(1)/(4)}


\implies -\sqrt{(1)/(4)} \leq x \leq \sqrt{(1)/(4)}


\implies -(1)/(2) \leq x \leq (1)/(2)

Therefore:


\textsf{Domain}: \quad \left[-(1)/(2), (1)/(2)\right]

To find the range, input the endpoints of the domain into the function:


\implies f\left(-(1)/(2)\right)=\sqrt{1-4\left(-(1)/(2)\right)^2}=0


\implies f\left((1)/(2)\right)=\sqrt{1-4\left((1)/(2)\right)^2}=0

To find the limit of the range, find the extreme point(s) of the function by differentiating the function and setting it to zero.


\implies f(x)=(1-4x^2)^{(1)/(2)}


\implies f'(x)=(1)/(2)(1-4x^2)^{-(1)/(2)} \cdot -8x


\implies f'(x)=-(4x)/(√(1-4x^2))

Setting it to zero and solving for x:


\implies -(4x)/(√(1-4x^2))=0


\implies -4x=0


\implies x=0

Substitute x = 0 into the function:


\implies f(0)=√(1-4(0)^2)=1

Therefore, the range is [0, 1]

1. Find the domain and range of the function f(x)=√1-4x².-example-1
User Will Brode
by
3.1k points