22.0k views
5 votes

\huge\sf\underline{Question}


\sf If \: {x}^(2) + (1)/(x ^(2) ) = 34

\sf find \: the \: value \: of \: \: \: x + (1)/(x)
a proper explanation needed :)

Thxx !! ​

User Rohlik
by
5.3k points

1 Answer

7 votes


{\qquad\quad\qquad\huge\underline{{\sf Answer}}}

Here we go ~


\qquad \sf  \dashrightarrow \: {x}^(2) + \cfrac{1}{ {x}^(2) } = 34

[ add 2 on both sides ]


\qquad \sf  \dashrightarrow \: {x}^(2) + \cfrac{1}{ {x}^(2) } + 2 = 34 + 2

[ form identity : a² + b² + 2ab ]


\qquad \sf  \dashrightarrow \: {(x)}^(2) + { \bigg(\cfrac{1}{ {x}^{} } \bigg) }^(2) + 2 \sdot(x) \sdot \bigg(\cfrac{1}{x} \bigg) = 36

[ a² + b² + 2ab = (a + b)² ]


\qquad \sf  \dashrightarrow \: {\bigg (x + \cfrac{1}{x} \bigg) }^(2) = 36


\qquad \sf  \dashrightarrow \: {\bigg (x + \cfrac{1}{x} \bigg) }^{} = √( 36)


\qquad \sf  \dashrightarrow \: x + \cfrac{1}{x} = \pm 6

so, the value of required expression is 6

[usually positive value is considered, but if asked the value can be either positive or negative]

User Georgian
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.