197k views
5 votes
What is the solution to the inequality?

A. y > 32
B. y > 2
C. y < 2
D. y < 32​

What is the solution to the inequality? A. y > 32 B. y > 2 C. y < 2 D. y-example-1
User Kilojoules
by
3.1k points

2 Answers

3 votes


\textbf{Heya !}


\bigstar\textsf{Given:-}

  • An inequality
    \sf{-\cfrac{y}{4}+7 > -1}


\bigstar\textsf{To\quad find:-}

  • y -- ?

▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪


\bigstar\textsf{Solution\quad steps:-}

First, subtract both sides by 7:-


\sf{-\cfrac{y}{4} > -1-7}}


\sf{-\cfrac{y}{4} > -8}

Now multiply both sides by 4:-


\sf{-y > -8*4}


\sf{-y > -32}

last step:-


\sf{y < 32}

`hope it was helpful to u ~

User Midhun Darvin
by
3.0k points
4 votes

Answer :

  • Option A. y > 32 is correct!!

Step-by-step explanation :


\implies \: \sf{ - (y)/(4) \: + \: 7 \: > \: - 1} \\ \\ \implies \: \sf{ - (y)/(4) \: > \: - 7 \: - 1} \\ \\ \implies \: \sf{ - (y)/(4) \: > \: - 8} \\ \\ \implies \: \sf{ \cancel- \: (y)/(4) \: > \: \cancel- \: 8} \\ \\ \implies \: \sf{ (y)/(4) \: < \: 8} \\ \\ </p><p>\implies \: \sf{ y \: < \: 8 * 4} \\ \\ \implies \: \bf{ y \: < \: 32}

User Maliks
by
3.3k points