71.8k views
1 vote
Y is inversely proportional to x².
When x = 4, y = 2.
Find y when x = 1 divided by 2

User UmeshR
by
7.5k points

1 Answer

3 votes


\textbf{Heya !}


\bigstar\textsf{Given:-}

  • y is inversely proportional to
    \sf{x^2}.


\bigstar\textsf{To\quad find:-}

  • If y=2 when x=4, what is y when x=
    (1)/(2) ?

▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪


\bigstar\textsf{Solution\quad steps:-}

If y is inversely proportional to x^2, the equation looks as shown below:-


\sf{\longmapsto{y=\cfrac{k}{x^2}}, where k -- constant of proportionality

Plug in all values


\sf{\longmapsto{2=\cfrac{k}{4^2}} , simplifying --


\sf{\longmapsto{2=k/16}

multiply by 16 both sides


\sf{\longmapsto 2*16=k}}


\sf{\longmapsto{32=k}}

▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪

Plug 32 into the second equation:-


\sf{\longmapsto y=\cfrac{32}{\bigg(\cfrac{1}{2}\bigg)^2}}

simplify the complex fraction


\longmapsto\sf{y=\cfrac{32}{\cfrac{1}{4}}

divide fractions


\sf{\longmapsto{y=\cfrac{32}{1}/\cfrac{1}{4}}=\cfrac{32}{1}\cdot}\cfrac{4}{1}}=128}

`hope that was helpful to u ~

User Junsu Cho
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories