80.1k views
0 votes
Rationalize the denominator:

GRADE 9


CBSE

Rationalize the denominator: GRADE 9 CBSE-example-1

2 Answers

3 votes

1-:


\displaystyle (2)/( √(3) - 1 )


\displaystyle = (2)/(( √(3) - 1)( √(3) + 1 ) \\


\displaystyle2 \frac{ √(3) + 1 }{ \sqrt{3 {}^(2) - 1 {}^(2) } }

by( a-b×a+b=a²b²)


\displaystyle2 ( √(3) + 1)/(3 - 1)


\displaystyle \: √(3) + 1


\displaystyle2 - ) (7)/( √(12) - √(5) )


\displaystyle\frac{ √(12) √(5) }{ \sqrt{12 {}^(2) } * \sqrt{5 {}^(2) } }


\displaystyle7( √(12) + √(5) )/(7) = √(12) + √(5)


\displaystyle3) = (8 + 3 √(5) )/(64 - 45) \\ = (8 - 3 √(5) )/(19)

Rationalize the denominator: GRADE 9 CBSE-example-1
User JillevdW
by
3.5k points
3 votes

Answer:

1. a)


\begin{gathered} (2)/( √(3) - 1 ) = (2)/( √(3) - 1) * \ ( √(3) + 1)/( √(3) + 1 ) \\ = \frac{2 √(3) + 2 } {( √(3) ) {}^(2) - 1 {}^(2) } = \frac{2 \sqrt{} 3}{3 - 1} = (2 √(3) )/(2) \\ = √(3) \end{gathered}


\\

b)


\begin{gathered} = > \: \: (7)/( √(12) - √(5) ) \\ \\ = > \: \: (7)/( √(12) - √(5) ) * ( √(12) + √(5) )/( √(12) + √(5) ) \\ \\ = > \: \: \frac{7( √(12) + √(5) ) }{ {( √(12)) }^(2) - {( √(5)) }^(2) } \\ \\ = > \: \: (7( √(12) + √(5)) )/(12 - 5) \\ \\ => \: \: \frac{ \cancel{7}( √(12) + √(5) ) }{ \cancel{7}} \\ \\ => \: \: √(12) + √(5) \end{gathered}

User Syplex
by
3.2k points