Answer:
24000 ft²
Explanation:
Triangle PRS:
b = base = PR = 240 ft
2AS = 240 ft
![\sf AS = (240)/(2)\\\\ AS = 120 \ ft](https://img.qammunity.org/2023/formulas/mathematics/high-school/anj3j72sljeloclt1kezvkhg799me4wdvx.png)
h = height = AS = 120 ft
![\sf \boxed{\bf \ Area \ of \ triangle = (1)/(2)b*h}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pjr3euqnj4jd1i6rtaj4ixx871yyq2e805.png)
![\sf =(1)/(2)*240*120\\\\ = 120 * 120\\\\ = 14400 \ ft^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/fd207wzaenmhdialel72jyb2d9b6xgdw76.png)
Triangle PRQ:
b = PR = 240 ft
3BQ = 240 ft
![\sf BQ = (240)/(3)\\\\ BQ = 80 \ ft](https://img.qammunity.org/2023/formulas/mathematics/high-school/fhnnao3w6d15h87s0uqwe7a2gniopte0ap.png)
![\sf Area \ of \ triangle \ PRQ = (1)/(2)*240*80](https://img.qammunity.org/2023/formulas/mathematics/high-school/dyu8i31wawhcf6t5p52bntkm610w0ect4d.png)
= 120 * 80
= 9600 ft²
Area of the quadrilateral PQRS = area of ΔPRS + area of ΔPRQ
= 14400 + 9600
= 24000 ft²