193k views
3 votes
3⁵.2⁴.2¹.3⁶.(3²)⁴ and down (2³)².3⁶​


User Erekalper
by
4.3k points

2 Answers

2 votes

Answer:

The result is 3¹³ /2

Explanation:

Greetings

User Cwurtz
by
3.8k points
6 votes

Answer:


(3^(13))/(2)

Explanation:

Given expression:


(3^5 \cdot 2^4 \cdot 2^1 \cdot 3^6 \cdot (3^2)^4)/((2^3)^2 \cdot 3^6)


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies (3^5 \cdot 2^4 \cdot 2^1 \cdot 3^6 \cdot 3^8)/(2^6 \cdot 3^6)


\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^(b+c):


\implies (3^((5+6+8)) \cdot 2^((4+1)))/(2^6 \cdot 3^6)


\implies (3^(19) \cdot 2^(5))/(2^6 \cdot 3^6)


\implies (3^(19) \cdot 2^(5))/(3^6 \cdot 2^6)


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies 3^((19-6)) \cdot 2^((5-6))


\implies 3^(13) \cdot 2^(-1)


\textsf{Apply exponent rule} \quad a^(-n)=(1)/(a^n):


\implies (3^(13))/(2^1)


\textsf{Apply exponent rule} \quad a^1=a:


\implies (3^(13))/(2)

User MrChristine
by
4.4k points