Answer:
1.14200738982×10^26
Explanation:
Substitution can make this integral much easier to evaluate.
Substitution
Let u = 7x² -x. Then du = (14x -1)dx. The limits on x become different limits for u:
for x = 1: u = 7(1²) -1 = 6
for x = 3: u = 7(3²) -3 = 60
Integral
![\displaystyle\int_1^3{(14x-1)e^((7x^2-x))}\,dx=\int_6^(60){e^u}\,du=\left.e^u\right|^(60)_6\\\\=e^(60)-e^6\approx e^(60)\approx\boxed{1.14200738982*10^(26)}](https://img.qammunity.org/2023/formulas/mathematics/college/7j7a3rvozwcce21kff4itzmz59jteeup9u.png)