Answer: the total area with the extension S≈82,3 foot², S>S'.
Explanation:
D₁=8 foot D₂=10 foot a wide extension = 4 foot.
1) Let the total area with the extension S is the area of the circular table S₁
plus a wide extension S₂.
Considere S₁:
![R_1=(D_1)/(2) \\R_1=(8)/(2) \\R_1=4 foot.\\S_1=\pi* R_1^2\\S_1=\pi *4^2\\S_1=16*\pi \\S_1\approx50,3\ foot^2.\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/vy0khx2vbbqi2voufrt0p918xgxe81pztv.png)
![S_2=8*4\\S_2=32 \ foot^2.](https://img.qammunity.org/2023/formulas/mathematics/high-school/fz5lowphbycfrh73mi1dg9lkuglkbq6itu.png)
![S\approx50,3+32\\S\approx82,3 \ foot^2.](https://img.qammunity.org/2023/formulas/mathematics/high-school/jx04czvdz6i4l7e6r9os0ig02p0v402my8.png)
2)\ Considere S':
![R_2=(D_2)/(2) \\R_2=(10)/(2) \\R_2=5 \ foot.\\S'=\pi *R^2\\S'=\pi *5^2\\S'=25*\pi \\S'\approx78,5\ foot^2.](https://img.qammunity.org/2023/formulas/mathematics/high-school/87svdpmxfbxoril8ida9gdf63jfd82ufbx.png)
S>S'.
Good luck an' have a nice day!