Answer:
2√3
Explanation:
From inspection of the given triangle:
- Side a is opposite angle A ⇒ a = BC
- Side b is opposite angle B ⇒ b = AC
- Side c is opposite angle C ⇒ c = AB
As we cannot be sure that ΔABC is a right triangle since it is not marked as such, use the cosine rule to find the exact length of side a.
Cosine Rule
![a^2=b^2+c^2-2bc \cos A](https://img.qammunity.org/2023/formulas/mathematics/college/ohleyp34fuaz5sa9rn8k203jmwxr1t6p2q.png)
where a, b and c are the sides and A is the angle opposite side a
Given:
Substitute the given values into the formula and solve for a:
![\implies a^2=2^2+4^2-2(2)(4) \cos 60^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/9vuiu19osp75nlaro1wxlycjoivrnz0eb1.png)
![\implies a^2=4+16-16\left((1)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/g0t6i99k44wgc4algwnkf5vhd8t89sfexz.png)
![\implies a^2=20-8](https://img.qammunity.org/2023/formulas/mathematics/college/39qw7sq17taiho5msih2ohlov2jbfv2jkb.png)
![\implies a^2=12](https://img.qammunity.org/2023/formulas/mathematics/college/v1ibfhj53quklac8s5v8p8g6tojl084pn8.png)
![\implies a=√(12)](https://img.qammunity.org/2023/formulas/mathematics/college/wqbxwigb40jhl1lxhto2xjifnlo7h1itr9.png)
![\implies a=√(4 \cdot 3)](https://img.qammunity.org/2023/formulas/mathematics/college/83snudo85i74hga9uqzzc1y612nn0qt898.png)
![\implies a=√(4){√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/s8hnt8hn0kx9lq411g3ls1ad7nrrfyp1ze.png)
![\implies a=2√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/qic5xwshv4q0d1jnj58xlmoenmzxl2zp4j.png)
Therefore, the exact length of side a is 2√3.
To find out if ΔABC is a right triangle, use Pythagoras Theorem to solve for side a:
![\implies a^2+b^2=c^2](https://img.qammunity.org/2023/formulas/mathematics/college/u9yjmp3vo6xv9u0kfqhbfpnqxpk5xpyeun.png)
![\implies a^2+2^2=4^2](https://img.qammunity.org/2023/formulas/mathematics/college/yiogky9p03wylshe0d5pf34u64agnxj0y2.png)
![\implies a^2+4=16](https://img.qammunity.org/2023/formulas/mathematics/college/x3vpauu3jqs3twupnm2op91kemews4erwm.png)
![\implies a^2=12](https://img.qammunity.org/2023/formulas/mathematics/college/v1ibfhj53quklac8s5v8p8g6tojl084pn8.png)
![\implies a=√(12)](https://img.qammunity.org/2023/formulas/mathematics/college/wqbxwigb40jhl1lxhto2xjifnlo7h1itr9.png)
![\implies a=2√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/qic5xwshv4q0d1jnj58xlmoenmzxl2zp4j.png)
As the measure of side a is the same as the solution found when using the cosine rule, we can conclude that ΔABC is a right triangle.