27.9k views
4 votes
HELP!!


\sf If \: {x}^(2) + \frac{1}{ {x}^(2) } = 47, \: and \: x > 0, \: then \: what \: is \: value \: of \: x + (1)/(x)

DON'T SPAM.​

2 Answers

3 votes


\qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star

  • x + 1/x = 7


\textsf{ \underline{\underline{Steps to solve the problem} }:}


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } = 47


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } + 2 - 2 = 47

( adding and subtracting 2, doesn't change the value )


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } + 2 = 47 + 2


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } + \bigg(2 \sdot x \sdot \cfrac{1}{x} \bigg) = 49

( x cancel out, so no change in value )


\qquad❖ \: \sf \: \bigg(x + \cfrac{1}{x} \bigg) {}^(2) = 49

( use identity a² + 2ab + b² = (a + b)² )


\qquad❖ \: \sf \: \bigg(x + \cfrac{1}{x} \bigg) {}^{} = √(49)


\qquad❖ \: \sf \: x + \cfrac{1}{x} {}^{} = \pm7

since we have to take positive value, i.e greater than 0


\qquad❖ \: \sf \: x + \cfrac{1}{x} {}^{} = 7


\qquad \large \sf {Conclusion} :

Therefore, the required value is 7

User Pranalee
by
8.3k points
4 votes

Answer:


  • x+\cfrac{1}{x} =7

================

Given:


  • x^2+\cfrac{1}{x^2} =47

Add 2 to both sides of equation:


  • x^2+\cfrac{1}{x^2}+2 =47+2

Then follow the steps:


  • x^2+\cfrac{1}{x^2}+2*x*\cfrac{1}{x} =49

  • (x+\cfrac{1}{x})^2=7^2

Take square root of both sides to get:


  • x+\cfrac{1}{x} =\pm\ 7

We are taking the positive value as we are told x > 0, hence the answer is 7.

User Keryn Knight
by
7.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories