By "number of Power set of A" I wonder if you mean the cardinality of the power set.
For any finite set with
elements, its power set contains
elements.
Here
, so the power set will contain
elements.
Recall that the power set is the set of all subsets of a given set
• subsets of
of size 0 (1):
![\emptyset](https://img.qammunity.org/2023/formulas/mathematics/college/s9kwg0w8ptz7ojvfq1xh6xjdigz77i4eat.png)
• subsets of size 1 (5):
![\{a\}\\ \{b\}\\ \{\{a\}\}\\ \{3\}\\ \{\{3\}\}](https://img.qammunity.org/2023/formulas/mathematics/college/2tgywvgxw06cdxc5lp5sidpbssmh8jyplt.png)
• subsets of size 2 (10):
![\{a,b\}\\ \{a,\{a\}\}\\ \{a, 3\}\\ \{a, \{3\}\}\\ \{b,\{a\}\}\\ \{b,3\}\\ \{b,\{3\}\}\\ \{\{a\},3\}\\ \{\{a\}, \{3\}\}\\ \{3,\{3\}\}](https://img.qammunity.org/2023/formulas/mathematics/college/6ci97rnzu9nv64mmplrhxqpruymujx1bfq.png)
• subsets of size 3 (10):
![\{a,b,\{a\}\}\\ \{a,b,3\}\\ \{a,b,\{3\}\}\\ \{a,\{a\},3\}\\ \{a,\{a\},\{3\}\} \\ \{a,3,\{3\}\}\\ \{b,\{a\},3\}\\ \{b,\{a\},\{3\}\}\\ \{\{a\},3,\{3\}\}](https://img.qammunity.org/2023/formulas/mathematics/college/zq3mht9o104f1rex56c5zgphz4su1gsi0d.png)
• subsets of size 4 (5):
![\{a,b,\{a\},3\}\\ \{a,b\{a\},\{3\}\}\\ \{a,b,3,\{3\}\}\\ \{a,\{a\},3,\{3\}\}\\ \{b,\{a\},3,\{3\}\}](https://img.qammunity.org/2023/formulas/mathematics/college/vo2j1v16axqegj4dsvaida76m9c5q8wlyy.png)
• subsets of size 5 (1):
![\{a,b,\{a\},3,\{3\}\}](https://img.qammunity.org/2023/formulas/mathematics/college/h9bjdlwrqkz0wnm8owb8csz9m2hi0g8ed6.png)