Answer:
28 whole soda cans or 28.4 soda cans (rounding to nearest tenth)
Explanation:
The soda cans and the pitcher can be modeled as cylinders.
Volume of a cylinder
![\sf Volume=\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/vwrgym3t2yze0l6mqtfcy18zzpv37mwm62.png)
where:
- r is the radius
- h is the height
Diameter of circle
![\sf d= 2r](https://img.qammunity.org/2023/formulas/mathematics/high-school/h2u939e7x6w9mb0xcewa1cpe3ov4smcj9k.png)
![\sf \implies r=(1)/(2)d](https://img.qammunity.org/2023/formulas/mathematics/high-school/n6pk777cbmrtgsivxc8gukamujyf57pt50.png)
Volume of Soda can
Given values:
- d = 6.5 ⇒ r = 3.25 cm
- h = 12 cm
![\begin{aligned}\sf \implies Volume & = \sf \pi (3.25)^2 \cdot 12\\ & = \sf 126.75 \pi \:\:cm^3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aty8rk04za4zr10pjnvygr6qyczu04hbl5.png)
Volume of Pitcher
Given values:
- d = 20 ⇒ r = 10 cm
- h = 36 cm
![\begin{aligned}\sf \implies Volume & = \sf \pi (10)^2 \cdot 36\\ & = \sf 3600 \pi \:\:cm^3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l5ydmbkpw8jmsw0hm2oyxrcg0ly6n1tzeg.png)
To calculate how many cans of soda the pitcher will hold, divide the volume of the pitcher by the volume of one soda can:
![\begin{aligned}\implies \textsf{Number of soda cans} & = \frac{\textsf{Volume of Pitcher}}{\textsf{Volume of one soda can}}\\\\&= \sf(3600 \pi)/(126.75 \pi)\\\\& = \sf 28.402366...\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6fbdsrdb21t03u9x82g8mn5mnc1wn6vc3b.png)
Therefore, the pitcher can hold 28 soda cans (nearest whole can), or 28.4 soda cans (nearest tenth).