57.9k views
4 votes
MATH HELP!!! 100PTS!!!

Suppose that u=log10(3) and v=log10(5). Find possible formulas for the following expressions in terms of u and/or v. Your answers should NOT involve any log 's.

a) log10(0.6)=
u-v


b) log10(0.25)=



c) log10(27000)=
3+3u


d) log10(sqrt10)=

1 Answer

4 votes

Answer:

a) u - v

b) 2v - 2

c) 3u + 3

d) ¹/₂

Explanation:

Given:


u=\log_(10)3


v=\log_(10)5

Part (a)

Rewrite 0.6 as a fraction:


\implies \log_(10)(0.6)=\log_(10)\left((3)/(5)\right)


\textsf{Apply the quotient log law}: \quad \log_a(x)/(y)=\log_ax - \log_ay:


\implies \log_(10)\left((3)/(5)\right)=\log_(10)3-\log_(10)5

Substitute the values of u and v:


\implies \log_(10)3-\log_(10)5=u-v

Part (b)

Rewrite 0.25 as 25/100:


\implies \log_(10)(0.25)=\log_(10)\left((25)/(100)\right)


\textsf{Apply the quotient log law}: \quad \log_a(x)/(y)=\log_ax - \log_ay


\implies \log_(10)\left((25)/(100)\right)=\log_(10)(25)-\log_(10)(100)

Rewrite 25 as 5² and 100 as 10²:


\implies \log_(10)(25)-\log_(10)(100)=\log_(10)(5^2)-\log_(10)(10^2)


\textsf{Appy the Power log law}: \quad \log_ax^n=n\log_ax


\implies \log_(10)(5^2)-\log_(10)(10^2)=2\log_(10)5-2\log_(10)10


\textsf{Apply the log law}: \quad \log_aa=1


\implies 2\log_(10)5-2\log_(10)10=2\log_(10)5-2(1)

Substitute the value of v:


\implies 2\log_(10)5-2(1)=2v-2

Part (c)

Rewrite 27000 as 30³:


\implies \log_(10)(27000)=\log_(10)(30^3)


\textsf{Appy the Power log law}: \quad \log_ax^n=n\log_ax


\implies \log_(10)(30^3)=3\log_(10)(30)


\textsf{Apply the log product law}: \quad \log_axy=\log_ax + \log_ay


\implies 3\log_(10)(30)=3\log_(10)(3)+3\log_(10)(10)


\textsf{Apply the log law}: \quad \log_aa=1


\implies 3\log_(10)(3)+3\log_(10)(10)=3\log_(10)(3)+3(1)

Substitute the value of u:


\implies 3\log_(10)(3)+3(1)=3u+3

Part (d)

Rewrite √10 as
10^{(1)/(2)} :


\implies \log_(10)(√(10))=\log_(10)(10^{(1)/(2)})


\textsf{Appy the Power log law}: \quad \log_ax^n=n\log_ax


\implies \log_(10)(10^{(1)/(2)})=(1)/(2)\log_(10)(10)


\textsf{Apply the log law}: \quad \log_aa=1


\implies (1)/(2)\log_(10)(10)=(1)/(2)(1)=(1)/(2)

User DWright
by
3.3k points