194,100 views
5 votes
5 votes
Please help!

P(A) = 1/3
P(B) = 2/9
P(A U B) = 4/9
Find P(A ∩ B).
A. 1
B. 1/3
C. 1/9
D. 20/18

User Steve Summit
by
4.1k points

2 Answers

3 votes
3 votes


\\ \rm\leadsto P(A\cap B)=P(A)+P(B)-P(A\cup B)


\\ \rm\leadsto P(A\cap B)=(1)/(3)+(2)/(9)-(4)/(9)


\\ \rm\leadsto P(A\cap B)=(3+2-4)/(9)


\\ \rm\leadsto P(A\cap B)=(1)/(9)

User Magnar Myrtveit
by
3.6k points
2 votes
2 votes

Answer:


\sf C. \quad (1)/(9)

Explanation:

Addition Law for Probability


\sf P(A \cup B)=P(A)+P(B)-P(A \cap B)

Given:


\sf P(A)=(1)/(3)=(3)/(9)


\sf P(B)=(2)/(9)


\sf P(A \cup B)=(4)/(9)

Substitute the given values into the formula and solve for P(A ∩ B):


\implies \sf P(A \cup B) = P(A)+P(B)-P(A \cap B)


\implies \sf (4)/(9) = \sf (3)/(9)+(2)/(9)-P(A \cap B)


\implies \sf P(A \cap B) = \sf (3)/(9)+(2)/(9)-(4)/(9)


\implies \sf P(A \cap B) = \sf (3+2-4)/(9)


\implies \sf P(A \cap B) = \sf (1)/(9)

User Gingerbreadboy
by
2.9k points