![\bf{56-10x\geq 20+8x }](https://img.qammunity.org/2023/formulas/mathematics/high-school/r22fzl4qtrn4axiymxy4fdvv78gnsctofb.png)
Subtract 8x on both sides.
![\bf{56-10x-8x\geq 20 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/cl7ek1knygli7cpecca9e6kotxel3s87qu.png)
Combine −10x and −8x to get −18x.
![\bf{56-18x\geq 20 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/at17o239bvkm13cv6xrv28fbtfrkfhin35.png)
Subtract 56 from both sides.
![\bf{-18x\geq 20-56 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/85l3y9nt4kwqh4l6r7to80ts2y1kwwfwot.png)
Subtract 56 from 20 to get −36.
![\bf{-18x\geq -36 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/sxz6hzapbv7vgxyh55h9zibkedzzl5fhrv.png)
Divide both sides by −18. Since −18 is <0, the inequality direction is changed.
![\bf{x\leq (-36)/(-18) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/wolts9oeoltlfa6kxmo72ohfqp236kz0xe.png)
Divide −36 by −18 to get 2.
![\bf{x\leq 2 \ \ \to \ \ \ Answer}](https://img.qammunity.org/2023/formulas/mathematics/high-school/glf4ww823t1g97nr1avbqu3cia8pzjjxah.png)
We conclude that the correct option is "C".
{ Pisces04 }