366,457 views
29 votes
29 votes
Given that f(x)=x^(2)-14 and g(x)=9-x, find (f-g)(6), if it exists.

User OverLordGoldDragon
by
2.3k points

2 Answers

6 votes
6 votes

f(x)=x^2-14

g(x)=9-x

Find g(6)


\\ \sf\longmapsto g(6)=9-6=3

Now


\\ \sf\longmapsto (f-g)(x)=f(g(x))


\\ \sf\longmapsto f(g(6))


\\ \sf\longmapsto f(3)


\\ \sf\longmapsto 3^2-14


\\ \sf\longmapsto 9-14


\\ \sf\longmapsto -5

User Pavel Santaev
by
3.1k points
27 votes
27 votes

Answer:

  • -5

Explanation:

Given:

  • f(x) = x² - 14 and g(x) = 9 - x

Find (f-g)(6):

  • g(6) = 9 - 6 = 3
  • (f-g)(6) = f(g(6)) = f(3) = 3² - 14 = 9 - 14 = -5
User Kahiem
by
2.8k points