Answer:
Explanation:
Given sequence:
- log x + log√2, 2logx + log 2, 3logx + log2√2, ...
a)
The terms can be rewritten as:
- T(1) = log x + log√2 = log x√2
- T(2) = 2logx + log 2 = 2logx + 2 log√2 = 2log x√2
- T(3) = 3logx + log2√2 = 3logx + 3log√2 = 3log x√2
- ...
- T(n) = n log x√2 (option A)
b)
Sum of the first n terms:
- log x√2 + 2log x√2 + ... + nlog x√2 =
- log x√2(1 + 2 + ... + n) =
- log x√2 (1 + n)*n/2 =
- 1/2n(n + 1)log x√2
Sum of the first 40 terms:
- 1/2*40(40 + 1)log x√2 =
- 820log x√2