Answer:
--- cup 1
--- cup 2
Explanation:
Given
Hemisphere
Cup 1
![Height = 14\ in](https://img.qammunity.org/2022/formulas/mathematics/high-school/9r6839fqurqro41ykwrit3ykjwjgt1gc31.png)
![Diameter = 6\ in](https://img.qammunity.org/2022/formulas/mathematics/high-school/vxth3f21k2bz6i1dth153rlp1qifomohea.png)
Cup 2
![Height = 12\ in](https://img.qammunity.org/2022/formulas/mathematics/high-school/h2pd4aom89gjs4263o74p3uh5qvi1inbp8.png)
![Diameter = 10\ in](https://img.qammunity.org/2022/formulas/mathematics/high-school/xi6c90073u0nk8ylvl9r1wjnzmbdhxbxxf.png)
Required: How many scoop of each?
For cup 1
Calculate the volume
![Volume = \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/cnmwirwsm0taeebd7184nbviyyte3mlwom.png)
Where
![h = 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/n3nq4vja6jwf7zkc3p26t62lwkoa8jik8b.png)
![r = (1)/(2) * 6 = 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/x2xkz9cfojlrkzc187i6x0xiqecq7djoej.png)
![Volume = \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/cnmwirwsm0taeebd7184nbviyyte3mlwom.png)
![Volume = \pi * 3^2 * 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/xaprmig1ulyi4ef138ynl7mlukpitvttfz.png)
![Volume = \pi * 126](https://img.qammunity.org/2022/formulas/mathematics/high-school/ntassup3bls0qx7jypiipordcnw36tw4ji.png)
![Volume = 126\pi](https://img.qammunity.org/2022/formulas/mathematics/high-school/p2j2ioua2eya7elrhqvi6bbad7u0tuo81s.png)
Divide the volume of the hemisphere by the calculated volume of cup 1
![Scoops = (4500\pi)/(3) / 126\pi](https://img.qammunity.org/2022/formulas/mathematics/high-school/g7ttoex79chpsbgge88073wd8m2b64f7ui.png)
![Scoops = (4500\pi)/(3) * (1)/(126\pi)](https://img.qammunity.org/2022/formulas/mathematics/high-school/yabz84kcxb9ogw3i2hrys5liroq6c4er0c.png)
![Scoops = (1500\pi)/(1) * (1)/(126\pi)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ef9x5nn2d3q36qmp6azxdiow29c5icvqyg.png)
![Scoops = (1500\pi)/(126\pi)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1myq0ohfmohts7po4ovfr1f14kx7ul769a.png)
--- approximated
For cup 2
Calculate the volume
![Volume = \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/cnmwirwsm0taeebd7184nbviyyte3mlwom.png)
Where
![h =12](https://img.qammunity.org/2022/formulas/mathematics/high-school/2yxelnxmsq6bsvay7gqny8wnbkmx04rwgv.png)
![r = (1)/(2) * 10 = 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/tl7lzztghqb78ns64m4yq9yzw8wa5wd7a7.png)
![Volume = \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/cnmwirwsm0taeebd7184nbviyyte3mlwom.png)
![Volume = \pi * 5^2 * 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/3mi5tda2w91d68oowrldvjbtuyvpvvzfh6.png)
![Volume = \pi * 300](https://img.qammunity.org/2022/formulas/mathematics/high-school/dnbvp5uib13je2xxjq9jl79tedswzugsr7.png)
![Volume = 300\pi](https://img.qammunity.org/2022/formulas/mathematics/high-school/hyep8y5g8wjyu0l1a2vr0eb0y5n7wsgcma.png)
Divide the volume of the hemisphere by the calculated volume of cup 2
![Scoops = (4500\pi)/(3) / 300\pi](https://img.qammunity.org/2022/formulas/mathematics/high-school/vak6nrlvikr1f8i3gtg1jn5cx6jwf3ppob.png)
![Scoops = (4500\pi)/(3) * (1)/(300\pi)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tmzxatalmxxnyrmnovoo7wcy4azkf8cfdu.png)
![Scoops = (1500\pi)/(1) * (1)/(300\pi)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tqipcb0491ajom887a7yuh3log12e0t0sq.png)
![Scoops = (1500\pi)/(300\pi)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mapnh7ravyx7o878bcz5xv0menglc06d7z.png)