189k views
17 votes
Solve for d small diameter

A=(\pi *D^(2) )/(4) - (\pi *d^(2) )/(4)

2 Answers

8 votes

Answer:


\boxed{\text{\Large √(-1.27324A+D^2)$}}

Explanation:


\displaystyle A=(\pi * D^2)/(4) - (\pi * d^2)/(4)


\displaystyle A=0.785398D^2 - 0.785398d^2

Solve for d


\displaystyle A-0.785398D^2= - 0.785398d^2


\displaystyle (A-0.785398D^2)/(- 0.785398) = d^2


-1.27324A+D^2=d^2


\displaystyle √(-1.27324A+D^2) =d

User GKi
by
6.1k points
3 votes

Answer:


\boxed{ \tt{d = \sqrt{D^(2) -(4A)/(\pi)} }}

Explanation:


if \: A=(\pi *D^(2) )/(4) - (\pi *d^(2) )/(4) \\ then \to \\ A = (\pi)/(4) (D^(2) - {d}^(2) ) \\ (D^(2) - {d}^(2) ) \pi = 4A \\ D^(2) - {d}^(2) = (4A)/(\pi) \\ {d}^(2) = D^(2) -(4A)/(\pi) \\ d = \sqrt{D^(2) -(4A)/(\pi)}

User Otorrillas
by
5.3k points