209k views
0 votes
Workout to the simplest:

\int \: {x}^(2) ln( {x}^(3) ) dx


User Drowe
by
8.9k points

1 Answer

6 votes

Answer:


\rm \displaystyle \ln(x) { {x}^(3) } - \frac{ {x}^(3) }{3} + \rm C

Explanation:

we would like to integrate the following integration


\displaystyle \int {x}^(2) \ln( {x}^(3) ) dx

before doing so we can use logarithm exponent rule in order to get rid of the exponent of ln(x³)


\displaystyle \int 3 {x}^(2) \ln( {x}^{} ) dx

now notice that the integrand is in the mutilation of two different functions thus we can use integration by parts given by


\rm\displaystyle \int u \cdot \: vdx = u \int vdx - \int u' \bigg( \int vdx \bigg)dx

where u' can be defined by the differentiation of u

first we need to choose our u and v in that case we'll choose u which comes first in the guideline ILATE which full from is Inverse trig, Logarithm, Algebraic expression, Trigonometry, Exponent.

since Logarithms come first our


\displaystyle u = \ln(x) \quad \text{and} \quad v = {3x}^(2)

and u' is
(1)/(x)

altogether substitute:


\rm \displaystyle \ln(x) \int 3{x}^(2) dx - \int (1)/(x) \left( \int 3 {x}^(2) dx \right)dx

use exponent integration rule to integrate exponent:


\rm \displaystyle \ln(x) \int 3{x}^(2) dx - \int (1)/(x) \left( 3\frac{ {x}^(3) }{3} \right)dx

once again exponent integration rule:


\rm \displaystyle \ln(x) 3\frac{ {x}^(3) }{3} - \int (1)/(x) \left( 3\frac{ {x}^(3) }{3} \right)dx

simplify integrand:


\rm \displaystyle \ln(x) 3\frac{ {x}^(3) }{3} - \int \frac{ 3{x}^(3) }{3x} dx

use law of exponent to simplify exponent:


\rm \displaystyle \ln(x) \frac{ 3{x}^(3) }{3} - \int \frac{ 3\cancel{ {x}^(3)} }{3 \cancel{x}} dx


\rm \displaystyle \ln(x) \frac{ 3{x}^(3) }{3} - \int \frac{ 3{x}^(3) }{3} dx

use constant integration rule to get rid of constant:


\rm \displaystyle \ln(x) \frac{3 {x}^(3) }{3} - 1 \int {x}^(2)dx

use exponent integration rule:


\rm \displaystyle \ln(x) \frac{3 {x}^(3) }{3} - \frac{ {x}^(3) }{3}


\rm \displaystyle \ln(x) { {x}^(3) } - \frac{ {x}^(3) }{3}

and finally we of course have to add the constant of integration:


\rm \displaystyle \ln(x) { {x}^(3) } - \frac{ {x}^(3) }{3} + \rm C

and we are done!

User Omer Gurarslan
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.