209k views
0 votes
Workout to the simplest:

\int \: {x}^(2) ln( {x}^(3) ) dx


User Drowe
by
4.9k points

1 Answer

6 votes

Answer:


\rm \displaystyle \ln(x) { {x}^(3) } - \frac{ {x}^(3) }{3} + \rm C

Explanation:

we would like to integrate the following integration


\displaystyle \int {x}^(2) \ln( {x}^(3) ) dx

before doing so we can use logarithm exponent rule in order to get rid of the exponent of ln(x³)


\displaystyle \int 3 {x}^(2) \ln( {x}^{} ) dx

now notice that the integrand is in the mutilation of two different functions thus we can use integration by parts given by


\rm\displaystyle \int u \cdot \: vdx = u \int vdx - \int u' \bigg( \int vdx \bigg)dx

where u' can be defined by the differentiation of u

first we need to choose our u and v in that case we'll choose u which comes first in the guideline ILATE which full from is Inverse trig, Logarithm, Algebraic expression, Trigonometry, Exponent.

since Logarithms come first our


\displaystyle u = \ln(x) \quad \text{and} \quad v = {3x}^(2)

and u' is
(1)/(x)

altogether substitute:


\rm \displaystyle \ln(x) \int 3{x}^(2) dx - \int (1)/(x) \left( \int 3 {x}^(2) dx \right)dx

use exponent integration rule to integrate exponent:


\rm \displaystyle \ln(x) \int 3{x}^(2) dx - \int (1)/(x) \left( 3\frac{ {x}^(3) }{3} \right)dx

once again exponent integration rule:


\rm \displaystyle \ln(x) 3\frac{ {x}^(3) }{3} - \int (1)/(x) \left( 3\frac{ {x}^(3) }{3} \right)dx

simplify integrand:


\rm \displaystyle \ln(x) 3\frac{ {x}^(3) }{3} - \int \frac{ 3{x}^(3) }{3x} dx

use law of exponent to simplify exponent:


\rm \displaystyle \ln(x) \frac{ 3{x}^(3) }{3} - \int \frac{ 3\cancel{ {x}^(3)} }{3 \cancel{x}} dx


\rm \displaystyle \ln(x) \frac{ 3{x}^(3) }{3} - \int \frac{ 3{x}^(3) }{3} dx

use constant integration rule to get rid of constant:


\rm \displaystyle \ln(x) \frac{3 {x}^(3) }{3} - 1 \int {x}^(2)dx

use exponent integration rule:


\rm \displaystyle \ln(x) \frac{3 {x}^(3) }{3} - \frac{ {x}^(3) }{3}


\rm \displaystyle \ln(x) { {x}^(3) } - \frac{ {x}^(3) }{3}

and finally we of course have to add the constant of integration:


\rm \displaystyle \ln(x) { {x}^(3) } - \frac{ {x}^(3) }{3} + \rm C

and we are done!

User Omer Gurarslan
by
4.8k points