85.9k views
23 votes
Find dy/dx if y=cot(x+y)​

User Shulito
by
7.8k points

1 Answer

13 votes

Given:

The equation is


y=\cot(x+y)

To find:

The value of
(dy)/(dx).

Solution:

We have,


y=\cot(x+y)

Differentiate with respect to x.


(dy)/(dx)=(d)/(dx)\cot(x+y)


(dy)/(dx)=-\text{cosec}^2(x+y)(d)/(dx)(x+y)


(dy)/(dx)=-\text{cosec}^2(x+y)(1+(dy)/(dx))


(dy)/(dx)=-\text{cosec}^2(x+y)-\text{cosec}^2(x+y)(dy)/(dx)


(dy)/(dx)+\text{cosec}^2(x+y)(dy)/(dx)=-\text{cosec}^2(x+y)


(dy)/(dx)(1+\text{cosec}^2(x+y))=-\text{cosec}^2(x+y)


(dy)/(dx)=-\frac{\text{cosec}^2(x+y)}{1+\text{cosec}^2(x+y)}

Therefore,
(dy)/(dx)=-\frac{\text{cosec}^2(x+y)}{1+\text{cosec}^2(x+y)}.

User Steve Hobbs
by
8.0k points