Answer:
![\displaystyle V = 28 \pi \ ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/xab18m2f9ei4zvozvmbvrv9ekggm7zcwa7.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Geometry
Volume of a Cylinder Formula:
![\displaystyle V = \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/f1ialcuwdenp2784icmd6k8d7dtdbx7of3.png)
- V is volume
- r is radius
- h is height
Explanation:
Step 1: Define
Radius r = 2 ft
Height h = 7 ft
Step 2: Solve for V
- Substitute in variables [Volume of a Cylinder Formula]:
![\displaystyle V = \pi (2 \ ft)^2(7 \ ft)](https://img.qammunity.org/2022/formulas/mathematics/college/dozjil3qnmcyg7isuel121w9h7m1qf1m57.png)
- [Volume] Evaluate exponents:
![\displaystyle V = \pi (4 \ ft^2)(7 \ ft)](https://img.qammunity.org/2022/formulas/mathematics/college/g0mgn81g6w8ijhznb7kxxw802qegj939pm.png)
- [Volume] Multiply:
![\displaystyle V = 28 \pi \ ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/xab18m2f9ei4zvozvmbvrv9ekggm7zcwa7.png)