Given:
Coordinates of the midpoint = (2,-14)
Coordinates of one endpoint = (4,-13)
To find:
The coordinates of the another endpoint.
Solution:
Let us assume (a,b) be the another endpoint.
According to the midpoint formula:
![Midpoint=\left((x_1+x_2)/(2),(y_1+y_2)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/ej12unagq872xsay3nec0mk8wdb0s1fbkk.png)
By using the midpoint formula, we get
![(2,-14)=\left((a+4)/(2),(b+(-13))/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zx7l9epcz6mk0w46i2hiu10nq9dm1o225g.png)
![(2,-14)=\left((a+4)/(2),(b-13)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gl805armtsc32ks5sjc64r4v2io156n1d3.png)
On comparing both sides, we get
![2=(a+4)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fl14qtisp44qtnhv826wgy5x97mtvezhws.png)
![4=a+4](https://img.qammunity.org/2022/formulas/mathematics/high-school/70gygornict2g8qhjp2zy182smf3h8plf5.png)
![4-4=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/ba55lb1bbbq00r9owjmdodcd070r19hrja.png)
![0=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/m0sisv77lpag8ywfv8bud4nfzk202y6kvq.png)
And,
![-14=(b-13)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jnefmyjabkeirk67byj878f75lqd2veqnw.png)
![-28=b-13](https://img.qammunity.org/2022/formulas/mathematics/high-school/yr5k7syin511mfi7tarlo1mm7bw2gzfg1t.png)
![-28+13=b](https://img.qammunity.org/2022/formulas/mathematics/high-school/jngxv3t91y7qauq8p8wo32wy051nuahw3f.png)
![-15=b](https://img.qammunity.org/2022/formulas/mathematics/high-school/9ba09f4ikmw7ylmfckg3aod78ui0f6jmig.png)
Therefore, the another end point is (0,-15).