Answer: 5 years
==========================================
Work Shown:

The first equation shown is the compound interest formula. I'm assuming that the bank is compounding annually (which means n = 1).
Whenever we have an exponent we want to solve for, we'll involve logs. A good phrase to remember is "If the exponent is in the trees, then log it down".
It takes approximately t = 4.937 years for the £7500 to become £10,000.
Round up to the nearest year to get t = 5 so we ensure that Brian has more than £10,000.